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Investing in the Unrivaled Potential of
Wide-Separation Sub-Jupiter Exoplanet
Detection and Characterisation with JWST

Thematic Areas (Check all that apply):

X (Theme A) Key science themes that should be prioritized for future JWST and
HST observations

[J (Theme B) Advice on optimal timing for substantive follow-up observations
and mechanisms for enabling exoplanet science with HST and/or JWST

[J (Theme C) The appropriate scale of resources likely required to support
exoplanet science with HST and/or JWST

X (Theme D) A specific concept for a large-scale (~500 hours) Director’s
Discretionary exoplanet program to start implementation by JWST Cycle 3.

Summary: We advocate for a large scale imaging survey of nearby young mov-
ing groups and star-forming regions to directly detect exoplanets over an unex-
plored range of masses, ages and orbits. Discovered objects will be identified early
enough in JWST’s lifetime to leverage its unparalleled capabilities for long-term
atmospheric characterisation, and will uniquely complement the known popula-
tion of exoplanets and brown dwarfs. Furthermore, this survey will constrain the
occurrence of the novel wide sub-Jovian exoplanet population, informing multi-
ple theories of planetary formation and evolution. Observations with NIRCam
F200W+F444W dual-band coronagraphy will readily provide sub-Jupiter mass
sensitivities beyond ~0.4” (F444W) and can also be used to rule out some con-
taminating background sources (F200W). At this large scale, targets can be se-
quenced by spectral type to enable robust self-referencing for PSF subtraction.
This eliminates the need for dedicated reference observations required by GO pro-
grams and dramatically increases the overall science observing efficiency. With an
exposure of ~30 minutes per target, the sub-Jupiter regime can be explored across
250 targets for ~400 hours of exposure time including overheads. An additional,
pre-allocated, ~100 hours of observing time would enable rapid multi-epoch vet-
ting of the lowest mass detections (which are undetectable in F200W). The total
time required for a survey such as this is not fixed, and could be scaled in conjunc-
tion with the minimum number of detected exoplanet companions.
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Anticipated Science Objectives: JWST direct imaging presents the only oppor-
tunity in the foreseeable future to detect and characterise the sub-Jupiter exoplanet
population beyond 10 au (Fig. 1). By surveying ~250 targets across several young
stellar groups, we expect a yield of at least 10, and as many as 70, sub-Jupiters (as-
suming planet mass distributions based on [1]). This sample is large and diverse
enough to enable statistical occurrence rate studies, and will facilitate detailed
follow-up investigations on discovered objects. This will greatly improve our un-
derstanding of: the extent of the core accretion [2] and gravitational instability [3]
formation pathways; planetary sculpting hypotheses for debris disk structures [4];
and the influence of planetary scattering [5]. These insights into giant planet for-
mation and evolution will clarify the impact giant planets have on their terrestrial
neighbors (of immediate value for the formulation of HWO), and the overall di-
versity of planetary system architectures. Discoveries will serve as new planetary
benchmarks with temperatures as low as ~250 K and masses as low as ~0.1 M,
and can be readily characterised in future JWST cycles through photometry and
spectroscopy (Fig. 2). This is a stark contrast to discoveries from NGRST, which
will not be amenable to follow-up characterisation. This survey will enable studies
of how sub-Jupiter atmospheres are affected by: gravity (cf. higher mass exoplan-
ets / brown dwarfs), irradiation vs. remnant heat from formation (cf. transiting
exoplanets), age (cf. Solar System giants), weather (i.e. variability), and low-
temperature clouds (e.g., H,O [6], NH3). Finally, the established ages of the target
groups allow companion masses to be determined from evolutionary models, and
luminosity differences due to variable initial entropies to be distinguished [7].

Urgency: These observations must be performed early on in the lifetime of
JWST to enable long term atmospheric characterisation in future cycles, which
may also be delayed by any necessary multi-epoch vetting of candidate detections.

Risk/Feasibility: The occurrence rate of these sub-Jupiters has no direct em-
pirical constraint and the number of detections is uncertain. Nevertheless, non-
detections will crucially inform occurrence rates and formation theories. A single
verified sub-Jupiter will provide extreme value for exoplanet atmosphere science.

Timeliness: These science objectives overlap with the EXEP Science Gap list
by informing: constraints on exoplanet atmosphere models (SCI-02), architectures
of planetary systems (SCI-04), and the influence of giant planets on 7g (SCI-05).

Cannot be accomplished in the normal GO cycle: A large GO program can-
not accomplish this survey, and, because the scientific return will happen over
many subsequent GO cycles, no GO program can justify the time commitment.
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Figure 1: The known exoplanet population, Solar System planets are marked using their respective
symbols. This survey provides unique access to the atmospheres of the wide-separation sub-Jupiter
population, as well probing their formation and evolution through the time domain. Existing ob-
servatories struggle to push below ~a few Mj,,. The E-ELT METIS sensitivity assumes a 10 Myr
target at 50 pc. Wide-separation planets detected by NGRST will not be amenable to follow-
up characterisation. Example survey is constructed from targets in Taurus Auriga (~2 Myr),
Chamaeleon (~5 Myr), TW Hya (~10 Myr), 3 Pictoris (~26 Myr), and Oceanus (~500 Myr),
others could be considered. The top 25 targets do not provide all of the sensitivity below the 10%
contour (for example) - a large survey is required to obtain multiple sub-Jupiter detections.
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Figure 2: Example ETC simulations of future observations of a hypothetical 300 K, Saturn mass,
exoplanet. Coronagraphic sensitivity is calculated at 1”. Spectroscopic sensitivity is calculated
at 3", NIRSpec spectroscopic 1/2/30 regions are shaded, MIRI spectroscopy has been binned to
improve signal-to-noise. JWST direct spectroscopy has already been performed on an exoplanet
companion at 1.6” separation (GO-2044), and is being pushed to sub-arcsecond separations (GO-
3399). Exposure time for coronagraphic observations is per filter.
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