

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

JWST Mosaicking Level 2 - Overview

Bill Blair JWST Master Class

November 2019

Brief overview presentation (this)

Watch APT Mosaics video tutorial, which covers most of the basic functionality needed. <u>Specifying Mosaics in APT</u> (13:41)

Hands on Exercises (approx. 30 minutes for each)

- Exercise #1: Learning the Basics
- Exercise #2: Handling Limitations in position angle
- Exercise #3: Adding or removing individual tiles in a mosaic

Mosaics Overview: Defining Mosaics

- Mosaicking is a technique whereby multiple pointings of a field of view are used to cover a larger spatial region that can be observed with a single pointing.
- In APT a mosaic is defined by a single target position, and a "grid" of FoVs around that position.
 - Each "tile" of the mosaic is represented by an offset from the "target" coordinate, not a specific RA and Dec.
 - Hence, this grid rotates about the target position as a unit.
- A mosaic is generally a single observation. In most cases for the larger FoV instruments (like NIRCam and MIRI imaging), each tile of the mosaic will be in a separate visit.
 - Depends somewhat on the Visit splitting distance for a given target and tile overlap used.
 - In order for the mosaic to be "schedulable", all of the individual tiles (visits) must have guide stars at the same time (i.e. at the same rotation angle).

Specifying mosaics can require use of many aspects of APT

Depending on the complexity of a given use case:

- APT -- Aladin visualization interface
 - Visualize mosaic on object
 - Investigate rotations and coverage
 - Coordinate changes and committing back into proposal
- Visit Planner and VP diagnostics
 - Mainly needed if position angle constraints or timing constraints are needed.
- Various Special Requirements
 - Again, primarily for cases where position angle or timing must be constrained.

Specifying mosaics can require use of many aspects of APT

Depending on the complexity of a given use case:

- APT -- Aladin visualization interface
 - Visualize mosaic on object
 - Investigate rotations and coverage
 - Coordinate changes and committing back into proposal
- Visit Planner and VP diagnostics
 - Mainly needed if position angle constraints or timing constraints are needed.
- Various Special Requirements
 - Again, primarily for cases where position angle or timing must be constrained.

Mosaics and Backgrounds – Things to consider

The background matching step in the data processing pipeline matches fluxes in the overlapping regions.

The net result is that the zero flux/background level can get lost in the process.

• This is relevant if you want to measure surface brightnesses accurately.

When mosaicking extended objects, make sure one or more tiles really gets out to the background sky.

- Allows more accurate background subtraction.
- Sometimes this is not feasible (e.g. source too large). If that is the case it is advisable to review the background levels on individual exposures *before they are combined by the pipeline* and take note of the uncertainties.
- Time variability of backgrounds can also be a concern for mosaic "re-observations" 6 months apart.
 - Ex: Coordinated parallels where one wants both MIRI and NIRCam imaging.
- Not important for point sources, as you can subtract a region around the source that represents the sky.

Watch APT Mosaics video tutorial: <u>Specifying Mosaics in APT</u> (13:41)

Distribute Exercises Handout and APT start files.

Get to work! (Work at your own pace. Questions? Raise hand and one of use will come around.)

Those helping in this session:

- Amber Armstrong, Program Coordinator (Monday session only)
- Douglas Long, RIA at STScI and Training coordinator for new hires.
- Weston Eck, Program Coordinator
- Elizabeth Nance, Program Coordinator
- Karla Peterson (Tuesday session only)

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY