

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

Wide Field Slitless Spectroscopy Level 2

Camilla Pacifici, Takahiro Morishita, Jo Taylor, Swara Ravindranath

JWST Master Class

November 21 2019

- Overview of WFSS on NIRISS and NIRCam
- 3 proposed science cases
- Simulate the scene with the ETC
- Prepare the observations in APT

Wide Field Slitless Spectroscopy allows us to obtain spectra for all the objects in the field of view.

Specification	NIRISS	NIRCam
Field of view	2.2 x 2.2 arcmin	2 detectors of 2.15 x 2.15 arcmin
Wavelength range covered	0.8 to 2.2 μm	2.4 to 5 μm
List of filters	F090W, F115W, F140M, F150W, F158M, F200W	F250M, F277W, F300M, F322W2, F335M, F356W, F360M, F410M, F430M, F444W, F460M, F480M
Resolution	R = 150	R = 1120 - 1680

- 1. Detect the Ly α hydrogen line at redshift \sim 9.
 - Additional exercise: detect optical emission lines for the same source.
- 2. Measure the properties of quiescent and star-forming galaxies at redshift 3 to 4 in a random field.

- 3. Detect the Pa α hydrogen line at redshift ~1 in an extended source.
 - Additional exercise: detect other emission lines for the same source.

https://jwst.etc.stsci.edu/

Read the Readme!!

Also: Help in JDox:

Exposure Time Calculator Overview

Create the scene by

- Clicking on "Scenes and Sources";
- Adding sources using the New button;
- Set the characteristics of the source in the "Source Editor";
 - The goal is to observe a **redshift 9.2**,
 - point source,
 - using an SED from a file (hint: "Upload spectra"),
 - normalizing it to a certain flux density (e.g. 25.5 mag in WFC3/F160W),
 - and adding a strong Lyα emission line (e.g. 3E-17 erg/s/cm², width <=200 km/s).
- Add the source to the scene using the Add Source button;
- Repeat if you wish to add more sources.

Now choose your instrument: WFSS NIRISS or NIRCam?

- Click on "Calculations" and choose the instrument and mode you want.
 - The calculation will start automatically.
- From the "Edit" menu above, you can delete or copy a selected calculation.
- On the right, you can change the characteristics of the observation:
 - Choose the filter where you expect Lyα to fall,
 - set a background of your choice,
 - adapt the **exposure time** to achieve the signal to noise ratio you desire (e.g. S/N^{10} on Ly α),
 - account for the dithering pattern you wish to use (<u>here</u>),
 - center the **aperture** on the source.
- Do not forget to include some imaging along with WFSS!

Possible output

Additional exercise with NIRCam

Create the scene by

- Clicking on "Scenes and Sources";
- Adding sources using the New button;
- Set the characteristics of the sources in the "Source Editor";
 - The goal is to observe various redshift 3 to 4 galaxies,
 - point sources,
 - using the SEDs from the available extragalactic spectra,
 - normalizing them to a certain flux density (e.g. 24.5 mag in WFC3/F160W),
 - and to offset the sources to cover the entire field of view.
- Add the source to the scene using the Add Source button.

Now choose your instrument: NIRISS or NIRCam?

- Click on "Calculations" and choose the instrument and mode you want.
 - The calculation will start automatically.
- From the "Edit" menu above, you can delete or copy a selected calculation.
- On the right, you can change the characteristics of the observation:
 - Choose the filter where you expect some features to fall (e.g., D4000 A break, [OIII] and Hα lines),
 - set a background of your choice,
 - adapt the exposure time to achieve the signal to noise ratio you desire (e.g. S/N~15 or larger in the continuum),
 - center the aperture on the source and choose noiseless sky background.

Possible output

Things to think about:

- Overlapping sources. There could be contamination in the S/N calculations.
- Try with a different sky background, but careful where the sky is sampled.
- Remember that you need imaging too.

Create the scene by

- Clicking on "Scenes and Sources";
- Adding sources using the New button;
- Set the characteristics of the sources in the "Source Editor";
 - The goal is to observe two redshift 0.8,
 - extended sources with multiple components (e.g. disk, bulge, clump),
 - setting the SEDs using the available galaxy spectra or a flat continuum,
 - normalizing them to a certain flux density (e.g. down to 23 mag in WFC3/F160W),
 - adding the Pa α and a bonus H α emission lines.
- Add the source to the scene using the Add Source button.

Now choose your instrument: NIRISS or NIRCam?

- Click on "Calculations" and choose the instrument and mode you want.
 - The calculation will start automatically.
- From the "Edit" menu above, you can delete or copy a selected calculation.
- On the right, you can change the characteristics of the observation:
 - Choose the filter where you expect Paα to fall,
 - set a background of your choice,
 - adapt the exposure time to achieve the signal to noise ratio you desire (e.g. S/N~10 to 15 in the emission line),
 - center the aperture on the source and choose the sky-background region.

Possible output

Additional exercise

with NIRISS

JWST Astronomers Proposal Tool Overview

APT for the different science cases

Proposal information:

general info that can be filled later.

Targets:

- "Fixed targets"
 - Science case 1: RA 11 49 33.5840; Dec +22 24 45.78
 - Science case 2: RA 03 32 18.8304; Dec -27 51 35.46
 - Science case 3: RA 03 32 22.5900; Dec -27 52 31.99

Observations:

- Create "Observation folder" and Add observations.
- Go back to the ETC and copy all the relevant information.
 - When you select WFSS, you can add the direct images together, NOT as separate observations.

Use the JWST Background Tool

JWST Backgrounds Tool

(jwstbackground) lunotta:/Users/cpacifici% jwst_backgrounds --day 100 --showsubbkgs 53.09412000 -2.7875570 3 These coordinates are observable by JWST 111 days per year.

For 45 of those days, the background is < 1.1 times the minimum, at wavelength 3.0 micron Warning: The input calendar day 100 is not available, assuming the middle day: 229 instead

JWST Parallel Observations

- The number of exposures must be the same for the primary and the parallel instrument
- The total exposure time of the parallel has to match the total exposure time of the primary, per exposure.