

NIRISS AMI OVERVIEW AND PROPOSAL PLANNING

Deepashri Thatte, Anand Sivaramakrishnan and NIRISS team

- Moderate-contrast, high angular resolution imaging for exoplanets, transition disks, AGN, Io volcanoes, exozodi disks
- Uses non-redundant mask (NRM) in the pupil wheel of NIRISS in conjunction with one of the 3x medium-band filters centered at 3.8, 4.3 and 4.8 μm (F380M, F430M, F480M) or a wide-band filter centered at 2.77 μm (F277W)
- Bright limit ~3 to 4 magnitudes in medium filters. Goal is to reach binary point source contrast up-to 10⁻⁴ at separations of ~70 400 mas ("behind the spot" of NIRCam coronagraphs).
- Photon-noise limited, combination of flat-field error and placement can affect performance.
- Requires TA, observing calibrator star close in time to the target, dithers available but not recommended.

~65 mas pixels are Nyquist sampled at ~4um F277W: reduced performance but has water band CLEARP for 'kernel phase' on fainter targets

NIRISS NRM design

7 holes

 $7 \times (7-1) / 2 = 21$ 'baseline' interferometer, no vector baseline repeated

Highly calibratable images

Undersized holes accomodate inexact pupil placement

15% throughput cf. full pupil Peak pixel ~1/40 full pupil peak pixel

Used for target acquisition for bright NIRISS SOSS (exoplanet transit spectroscopy) targets

Enables coarse & fine wavefront sensing as back-up to NIRCam

Science motivation

- Probe separations of ~40 to 400 mas
- At contrast of up to 9 mag
- Filters: F380M, F430M, F480M, (and F277W)

Science goals

- Detection of planets
 very close (70-500 mas)
 to their parent star.
- Study of feedback and fueling structures in AGNs.
- Transition Disks Planets/structure
- Ultracool star binarity
- Exozodi detection
- lo volcano photometry

Complements NIRCam coronagraphy

Simulation of 1-2 Jupiter mass planet at 1 AU around MOV host star at 10 pc (by NIRISS IDT). Observing time: 3 hr

Interferometric resolution, small IWA

- $\delta \theta = 0.5 \ \lambda/D$ Michelson Criterion (NRM)
- $\delta \theta = 1.22 \ \lambda$ /D Rayleigh Criterion (Full aperture)
- $\delta \theta = 4\lambda/D$ NIRCam coronagraph (Inner Working Angle)

Easier to calibrate out instrumental effects

NIRISS AMI PSF

Exposure Nomenclature

The NIRISS AMI subarray is SUB80 (FULL also available) One frame per group (NISRAPID readout pattern)

NIRISS AMI Exposure

The NIRISS AMI subarray is SUB80 (FULL also available) One frame per group (NISRAPID readout pattern)

Note: The Total Exposure Time shown by JWST ETC includes resets, do not use it to calculate signal. Use photon collect time instead.

SUB80

Filter	NGROUPS 1	NGROUPS 2
F277W	7.0	7.6
F380M	4.1	4.7
F430M	3.4	4.0
F480M	3.1	3.7

30,000 e⁻ pixel signal limit, pixel-centered PSF

Add ~4 mag to these to get CLEARP SUB80 brightness limit (cf NRM) Add ~5.5 mag to get FULL detector NRM brightness limit (cf SUB80) Add ~9.5 mag to get FULL CLEARP brighness limit

Fringe phases & amplitudes

Interferometric view

7 hole mask: 21 independent baselines. FT has central splodge + 42 splodges Get fringe visibilities & (Fourier) phases of each of the 21 fringes (42 numbers)

For three holes, sum of 3 fringe phases = closure phase

$$\phi_{i,j} = \phi_j - \phi_i$$

$$\phi_{1,2} + \phi_{2,3} + \phi_{3,1} = 0$$

Non-zero closure phases are a result of structure or measurement errors

Contrast ~ $1/\sigma_{CP}$

Calibrating Closure phases & SqV

For a point source; Closure phase (CP) should be 0 square visibility (SqV) should be 1

Remove residual error/instrumental contribution to closure phases by calibrating with the point source calibrator star

Subtract CAL CPs from Target CPs

$$CP_{target} = (CP_{target} + CP_{instrument}) - (CP_{calibrator} + CP_{instrument})$$

Any non-zero closure phase is due to asymmetry in the source. CPs do not measure centro-symmetric structure, but SqV's do

Divide target visibilities by calibrator visibilities Square calibrated visibilities to get SqV

Fit science data to fringe quantities

AMI Operations

- AMI Target Acquisition in 64 x 64 subarray (SUBTAAMI)
 - NGROUPS odd numbers between 1 & 19 (avoid saturation)
 - NISRAPID readout
 - Acquire in F480M, MASK_NRM for bright, CLEARP faint
 - Small Angle Maneuver to SUB80 science subarray POS I
- AMI data acquisition in SUB80: 80 x 80 subarray
 - 80×76 light sensitive, 4 rows of reference pixels
 - NISRAPID readout only for SUB80 (select NGROUPS, NINT)
 - Recommend POS 1 only (default is pixel center)
 - Expected POS 1 placement to \sim 5 mas per axis
 - User-selected offset possible
 - Dithers possible but not recommended
- SUB80 frame time 0.07544 s (approx 1 /15 s)
- Full detector possible (optional TA), NISRAPID, 10.7 s frame time
 -NIS available for FULL

SUB80 AMI subarray 5.2" × 4.9"

76 x 80 light sensitive pixels

Target placement at POS 1

Sub-dithers available, use with caution

Dithers possible but not recommended.

NIRISS AMI Observation planning: Step I Select science targets(s) and calibrator(s)

- Select Science Target & (optional) PSF CAL[ibrator] star
 - Check if target and calibrator are visible using JWST General Target Visibility Tool (GTVT) or APT.
 - Similar spectral type & brightness
- Vet potential calibrators for IR excess, strong spectral lines, binarity
 - <u>Catalog searches</u>, 8m-class ground NRM, VLT & LBT interferometry (e.g. SearchCal)
- Shared CALs save time
 - For low required contrast (eg BD binaries) use existing/simulated CAL
 - Cooperate across programs to select & share CALs

NIRISS AMI Observation planning Step 2 Exposure depth estimation

Binary point source

Nphotons = $1.5 \times N_{hole}^2$ / (contrast ratio)² ----- Ireland (2013) = 73.5 / (contrast ratio)²

Considering the fact that NRM has not been used in space before, we use a slightly more conservative value of: Nphotons = 100 / (contrast ratio)² For example, to detect a contrast ratio of 10^{-3} Nphotons =100 / $(0.001)^2 = 10^8$

 Therefore we need 10⁸ photons from the target (and also the calibrator) with NRM and the F480M in the ETC

NIRISS AMI Observation planning Step 3 – JWST ETC

- Stay below a signal limit of 30000 electrons in the peak pixel of an integration
 - When two neighboring pixels accumulate charge at very different rates, photoelectrons from the brighter pixel migrate to its neighboring pixels (charge migration)
 - ETC issues a warning when this signal limit is exceeded
 - This signal limit is lower than the true non-linearity based saturation limit for the NIRISS detector
- Calculate exposure parameters to reach required exposure depth (total photons) needed to detect contrast

• The extended wings of the AMI PSF can be used for data analysis

- Strategy tab: Choose noiseless sky background when defining the extraction parameters for the source flux and for the background to be used for background subtraction. The extended PSF makes background subtraction difficult and AMI analysis handles background in the data.
- Use the following aperture extraction radius for point sources
 - F480M: 2.5", F430M: 2.3", F380M: 2.0", F277W: 1.6"

• A note about Total Exposure Time in ETC

- The exposure time reported by ETC includes reset time, equivalent to one tframe, between each integration and the time for full-frame reset of pixels outside the subarray, which occurs before every integration when the detector is in subarray mode. No photons are recorded during this reset time, so these reset times should not be included when calculating the total number of photons.
- Use Photon collect time = NGROUPS × NINT × TFRAME to estimate signal

NIRISS AMI Observation planning Step 4 AMI specific steps in JWST APT

- A <u>target acquisition</u> (TA) is required when using a subarray and strongly recommended for full frame readout to ensure that the target is always placed on the same detector pixel.
- We recommend using GAIA DR2 archive to get coordinates and proper motion of the sources and 2015.5 for epoch in APT
- TA is performed with the F480M filter prior to the start of science observations. Therefore starting an exposure sequence with the F480M filter is most efficient. If using all the filters the sequence F480M, F380M, F430M, and F277W produces the least motion of the Filter Wheel.

NIRISS AMI Observation planning Step 4 – AMI specific steps in JWST APT continued...

- Use same positioning (eg POS I, because of flat-field error)
- For higher contrast needs science target and calibrator should be observed close in time and without PM/SM adjustments between observations.

Special Requirement tab,

- Timing requirement of Group/Sequence Observations Link, selecting target(s) and calibrator(s) from the Observation list box
- > Non-interruptible option

NIRISS AMI Observation planning Step 4 – AMI specific steps in JWST APT continued...

- Small slews between target and calibrator improves efficiency and stability
- Under PSF Reference Observation in Form Editor select PSF reference star to associate target with the calibrator for target observation. Choose 'This is a PSF Reference Observation' for calibrator observation. This tells the JWST pipeline to calibrate target with a specific calibrator(s).

- Verify that you entered correct coordinate information by creating target confirmation charts, view observation in Aladin
- Run visit planner
- Run Smart Accounting

NIRISS AMI Observation planning APT timing report

	ami_times.txt — Edited ~
# API Output Product #	
# APT Version: Version 27.3.1 JWST PRD: PRD0PSSOC-M-025 # Date: Mon Nov 18 16:09:14 GMT 2019	
JWST Times Report for JWST Approved Proposal 23 (Unsaved)	
Note: Glossary of terms and column headers at bottom of this report	
* HD-218396 (Obs 1) Science Total Time Duration Charged 4416 9169 Exposure Specifications: Exp SUBARRAY READOUT FrameRead Groups NFrame Grocop 1 Acg SUBTAWI NISPARID 0.050 3 0 0	ints PhotonCollect Diths PrimDiths SecDiths NumExp TotalPhoton ExposureDuration ExposingDuration
I SUBBW NISKAPID 0.0/5 9 1 0 0 Visit Durations: Pointing Science Instrument (GS (Targ (Exp Visit Diright Duration Overhead (SAMs) Acg) Avg) (b)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d	S04 4415,956 I I I I 4415,956 S054 S044 (Visit Slew Observatory Direct Sched Total Time (Mech) (OSS) (MSA) (IRS2) Ovhd) Time Overheads Overhead Charged 24) (30) (0) (0) 62) 1800 1265 0 9169
* HD-218172 (0bs 2)	

Rotate for good uv-coverage

Rotation helps fill uv plane coverage

- Moderate-contrast, high angular resolution imaging using NRM+Filter (F480M, F430M, F380M, F277W)
- Exoplanets, AGNs, Transition Disks Planets/structure, Exozodi disks, lo volcano photometry
- Bright limit ~3 to 4 magnitudes in medium filters.
- Binary point source contrast goal: up-to 10⁻⁴ at separations of ~70–400 mas
- Complementary to NIRCam coronagraph
- AMI TA 64x64, SUB80 array with NISRAPID readout for data acquisition, FULL array available
- Calculate exposure parameters (NGROUPS, NINT) using JWST ETC, use those as an input to JWST APT.
- Send your questions to JWST help desk https://stsci.service-now.com/jwst

NIRISS AMI backup slides

AMI filter bandpasses

Binary point source contrast ~9+ magnitudes for F380M, F430M, F480M

Reduced perfomance with F277W (not Nyquist sampled) – but good for breaking Brown Dwarf/Jovian Log g/Teff degeneracy to constrain bulk physical properties (Artigau et al. SPIE 2012)

TELESCOPE SPATIAL SPACE TELESCOPE

For NIRISS AMI subarray is SUB80, readout pattern is NISRAPID (one frame per group) Signal on Detector 5 Groups GROUP in this Integration FRAME Reset Detector Averaged Frames within Groups **Dropped Frames** between Groups Time INTEGRATION

NGROUPS

number of groups in an integration

NINT: number of integrations in an exposure

EXPOSURE: The end result of one or more INTEGRATIONS over a finite period of time.

EXPOSURE defines the contents of a single FITS file

EXPOSURE (one or more integrations)

Post-observations: Calibrate imaging data

JWST imaging data analysis on Target or CAL

- Common to other JWST imaging, eg NIRCam imaging
- Correct for non-linearity, flat field, cosmic rays, etc

To be determined from on-sky performance:

- **EITHER** Average all exposures
 - One final image
- OR Average all groups (recommended)
 - NINT images (per exposure might need multiple exposures)
 - Better for statistics, image quality/stability monitoring

Extract observables:

- EITHER Case A: Fringe amplitudes (visibilities) & phases, flux
 - Binary or multiple star model fitting
- OR Case B: Use image data for image reconstruction
 - CAL PSF and Target image

Fringe phases & amplitudes

Numerical Fourier transform to a complex number array

- Conceptually easier to understand but not what we do
- Measure splodge heights (fringe visibilities), splodge phases in FT(data)
- Bad pixels corrupt an FT
- Fix bad pixels then FT? Tricky.
- Fit analytical model to image (recommended)
 - Fit analytical fringe model to image, ignore bad pixels
 - Determine *pupil rotation* from image
 - Least squares extraction of 21 fringe phases & visibilities, flux, pedestal
 - Calculate:
 - Closure Phases (CPs)
 - Squared visibilities (SqV)
 - See Greenbaum et al. ApJ 2015 for algorithm
 - Implemented in JWST pipeline
- Fit model of science data to fringe quantities

Exoplanet Imaging with AMI

- Three medium-band filters: 3.8, 4.3 & 4.8 µm
 - Provide good constraints on log g and Teff
- Follow-up of GPI/SPHERE planets with separation less than ~0.5 arcsec and contrast >10⁻⁴ @ 4 um.
 - Photometry and astrometry (e.g. Beta Pic b) (on flip side of FGS)
- Detection/confirmation/disambiguation/follow-up of suspected protoplanets in transitional disks (e.g. LkCA 15 disk)

Exozodi measurement

Simulated F480M and F380M visibility of Eta Crv + MCFOST disk model and Eta Crv with 1/100 the dust mass in the disk (Tuthill & Sivaramakrishnan). NIRISS photometric and JWST pointing stability should enable this measurement. Cf. ground > \sim 5% visibility errors

lo vulcanism

Simulated F430M images of Jupiter's closest Galilean moon, Io, with and without a typical volcanic event, after a Laplacian-like filter is applied to the simulated data. Space-based *photometry* of such a volcanic event should improve upon ground-based adaptive optics photometry (Thatte et al. LPSC 2015)

Simulated volcanoes on Jupiter's moon lo

NIRISS AMI hands-on exercises

1. Log in to JWST ETC and Open program #23

Create New Workbook	Sample Workbooks -	Example Science Program Workbooks -		
		#22 NIRCam Deep Field Imaging with MIRI Imaging Parallels		
Lloor Accoro Dormio	sions for #02, NIDIC	#23: NIRISS AMI Observations of Extrasolar Planets Around a Host Star		
Star 9	SIONS IOF #23: NIRIO	#26: MIRI MRS and NIRSpec IFU Observations of Cassiopeia A	Email	Add User by Email
		#28: MIRI MRS Spectroscopy of a Late M Star		
llser-				Revoke

Create a scene with another target with spectral type F0V, vegamag=6.5, normalized in NIRISS F430M. Name the source 'Target 2' and name the scene 'Target 2 Scene'

- i. Create a Target Acquisition calculation for this source
- ii. Create a new calculation to use this scene
- iii. Calculate NGROUPS for an observation with NRM + F430M
- iv. Compare the 'Maximum number of Groups Before Saturation' value with the central pixel value in Groups Before Saturation image
- v. Calculate NINT to get 10^9 total photons in the exposure.
 - Use photon collect time formula and Extracted Flux in the Reports panel
- vi. What contrast can you reach with 10⁹ total photons?

AMI calculations in JWST ETC

2. What is the magnitude (Vegamag) of the brightest F0V star that you can observe with NGROUPS=7 in F480M, F380M?

3. Create calculations to calculate NGROUPS and NINT required to get 10^7 photons from HD37093. Use Vegamag = 5.47 normalized in F380M and vegamag=5.46 normalized in F430M and F480M

4. Calculate NGROUPS=1 and NGROUPS=2 bright limits (Vegamag) for a A0V star observed with F380M.

1. Log in to JWST ETC and Open program #23

Create New Workbook	Sample Workbooks -	Example Science Program Workbooks -		
		#22 NIRCam Deep Field Imaging with MIRI Imaging Parallels		
Calaata Waddaada		#23: NIRISS AMI Observations of Extrasolar Planets Around a Host Star		
Select a workbook	•	#26: MIRI MRS and NIRSpec IFU Observations of Cassiopeia A	Imail	Add User by Email
User -		#28: MIRI MRS Spectroscopy of a Late M Star		
		#31: NIRISS SOSS Time-Series Observations of HAT-P-1		
		#33: NIRISS WFSS and NIRCam Imaging of Galaxies Within Lensing Clusters		
		#34: NIRSpec IFU and Fixed Slit Observations of Near-Earth Asteroids		

2. Create a scene with another target with spectral type FOV, vegamag=6.5, normalized in NIRISS F430M. Name the source 'Target 2' and name the scene 'Target 2 Scene'
Source Editor •

Online the Constant				Shape Oliset	
Calculations Scenes and Sources Update Spectra Calculations Select a Scene • X Default Scene • X Default Scene ID - Name - Sources # Calcs -	Select a Source 9 ID - Plot Name - Scenes - # Calcs - 🛆		Spectral Energy Distribution O Uploaded File	Redshift 0	١
★ 1 Target 1 3	1 D 218396 1 3			Extinction	
☆ 2 PSF Reference Star 2 4	2 🔽 HD 218172 2 4		•	Law	Milky Way R_V=3.1
☆ 3 Scene 3 0 Wew Add Source Remove Source Delete	3 Source 3 O		Select Phoenix Stellar Models FOV 7250 4.0 No Continuum	Ext. Magnitude Ext. Bandpass	0 © J •
	Source Editor	Lines Shape Offset	Source selected: 3		Reset Save
	Scene Identity Information				
	Target 2 Scene				
	No comment				
	Source Identity Information				
	Target 2				
	Source selected: 3	Tesst Savo			

40

2. Create a scene with another target with spectral type FOV, vegamag=6.5, normalized in NIRISS F430M. Name the source 'Target 2' and name the scene 'Target 2 Scene' continued...

Source Editor 0	Calculations Scenes and Sources Upload Spectra	Caveats and Limitations		
ID Continuum Renorm Lines Shape Offset		Salast a Source	Source Editor	
Normalize Source Flux Density	ID Name - Sources # Calcs -	ID - Plot Name - Scenes - # Calcs - ▲	ID Continuum Renorm Lines Shape	Offset
Renormalization applied after redshift	★ 1 Target 1 3	1 🔲 HD 218396 1 3		
Normalize at wavelength	☆ 2 PSF Reference Star 2 4	2 🔲 HD 218172 2 4	Position of Source in Scene	
0.001 © mjy v lambda 2 © µm	☆ <mark>3 Target 2 Scene 3 0</mark>	3 🔽 Target 2 3 0	A onset	arcsec
Normalize in bandpass			Y offset 0	arcsec
6.5 😳 vegamag 🕶	Se	ect new scene, new	Orientation 0	degrees
O JWST NIRISS/IMAGING ▼ F430M ▼		urso and then add		
	30			
	SO	urce		
Source selected: 3 Reset Save				
	New Add Source Remove Source Delete	New Delete	Source selected: 3	Reset Save

- i. Create a Target Acquisition calculation for this source
- ii. Create a new calculation to use this scene
- iii. Calculate NGROUPS for an observation with NRM + F430M
- iv. Compare the 'Maximum number of Groups Before Saturation' value with the central pixel value in Groups Before Saturation image
- v. Calculate NINT to get 10⁹ total photons in the exposure.
 - Use photon collect time formula and Extracted Flux in the Reports panel

C

vi. What contrast can you reach with 10⁹ total photons?

	1					
MIRI +	N	IRCam - NIRISS -	NIRSpec	• •		
ID +	Θ	Mode -	λ-	Scn -	(s) -	SNR -
1		niriss ami	4.81	1	0.85	1007.77
2		niriss ami	4.81	2	0.62	507.22
3		niriss ami	4.81	1	5039.82	7831.05
4		niriss ami	4.81	2	8050.99	7836.49
5		niriss target_acq	4.81	1	0.22	104.87
6		niriss target_acq	4.81	2	0.22	72.26
7		niriss target_acq	4.81	2	0.32	117.41
8	V	niriss target_acq	4.81	1	0.22	0.00
-	-			-		

NIRISS Target Aquisition	
cq Mode	
SOSS or AMI Bright	-
ilter	
F480M	-

alculations	Sonnon and Sourcon	Linioad Spectra	Caugate and Limitat
alculations	oceries and oources	Opioau opectra	Caveats and Limitat

	1						
ID -	ø	Mode -	λ-	Scn -	(s) -	SNR -	▲
1		niriss ami	4.81	1	0.85	1007.77	θ
2		niriss ami	4.81	2	0.62	507.22	0
3		niriss ami	4.81	1	5039.82	7831.05	0
4		niriss ami	4.81	2	8050.99	7836.49	0
5		niriss target_acq	4.81	1	0.22	104.87	0
6		niriss target_acq	4.81	2	0.22	72.26	0
7		niriss target_acq	4.81	2	0.32	117.41	0
8	V	niriss target_acq	4.81	3	0.72	157.37	0
	-			-		🔽	

Subarray			Readout pattern		
SOSS or	AMI TA	*	NISRAPID		
Groups 🚦	•	Integrations		Exposures	
13		• 1	-	1	
Total integ	rations: 1				

AMI calculations in JWST ETC

- i. Create a Target Acquisition calculation for this source
- ii. Create a new calculation to use this scene
- iii. Calculate NGROUPS for an observation with NRM + F430M
- iv. Compare the 'Maximum number of Groups Before Saturation' value with the central pixel value in Groups Before Saturation image
- v. Calculate NINT to get 10^9 total photons in the exposure.
 - Use photon collect time formula and Extracted Flux in the Reports panel
- vi. What contrast can you reach with 10⁹ total photons?

MIRI	•	NIRCam -	NIRISS -	- N	VIRSpec -	- 8			MIF	२ । -	NIRCam -	NIRISS -	NIRS	pec 🗸 🧯	•		Scene ★ Backgrounds Instrument Setup Detector Setup Strategy
ID -	Ø	Mode -	Imaging	1		(s) -	SNR -	A	ID -	0	Mode -	λ-	Scn	- (s) -	SNR -	<u>A</u>	Scene for Calculation ID Continuum Renorm Lines Shape
1		niries ami	SOSS	,		0.85	1007 77		1		niriss ami	4.81	1	0.85	1007.77		3: Target 2 Scene Scene Identity Information
	-	minos ami	WFSS			0.00	1007.77		2		niriss ami	4.81	2	0.62	507.22	0	Sources in that Scene Target 2 Scene
2		niriss ami	AMI			0.62	507.22	\bigcirc	3		niriss ami	4.81	1	5039.82	7831.05	0	3: Target 2
3		niriss ami	Target A	Acquis	sition	5039.82	7831.05	0	4		niriss ami	4.81	2	8050.99	7836.49	0	No comment
	_		iu.goti						5		niriss target_ad	cq 4.81	1	0.22	104.87	0	e → Source Identity Information
4	U	niriss ami	4	.81	2	8050.99	7836.49	0	6		niriss target_ad	cq 4.81	2	0.22	72.26	0	Target 2
5		niriss target_	_acq 4	.81	1	0.22	104.87	0	7		niriss target_ad	cq 4.81	2	0.32	117.41	0	
6		niriss target_	acq 4	.81	2	0.22	72.26	0	8		niriss target_ad	cq 4.81	3	0.72	157.37	0	
7		niriss target_	acq 4	.81	2	0.32	117.41	0	9	 Image: A start of the start of	niriss ami	4.28	3	0.85	520.97	0	
_	_				_				-	-			-			-	

iii

AMI calculations in JWST ETC Answers to questions

- i. Create a Target Acquisition calculation for this source
- ii. Create a new calculation to use this scene
- iii. Calculate NGROUPS for an observation with NRM + F430M
- iv. Compare the 'Maximum number of Groups Before Saturation' value with the central pixel value in Groups Before Saturation image
- v. Calculate NINT to get 10⁹ total photons in the exposure.
 - Use photon collect time formula and Extracted Flux in the Reports panel
- vi. What contrast can you reach with 10⁹ total photons?
- Update Scene, background, Instrument Setup and Strategy and run the calculation with default Detector Setup

	Scene * Backgrounds Instrument Setup Detector Setup Strategy	Scene * Backgrounds Instrument Setup Detector Setup Strategy
Scene * Backgrounds Instrument Setup Detector Setup Strategy	Position 9	NIRISS AMI NIRISS AMI NRM F430M
Scene for Calculation ID Continuum Renorm Lines Shape Offset	Pa Dec 0.00:00.00 0:00:00.00	Filter y 10
3: Target 2 Scene Normalize Source Flux Density	Background configuration	F430M
Sources in that Scene Renormalization applied after redshift	None O Low Medium High	
3: Target 2 Normalize at wavelength	Date Jul • 1 • 2020 •	
0.001 © flam • lambda 2 © µm		<u></u> <u></u> <u></u>
Normalize in bandpass		0
6.5 © vegamag 🔹		
O JWST NIRISS/IMAGING + F430M +		
HST WFC3/IR • F098M •		
Calculation selected: 9, Mode: niriss ami Reset Calculate	Calculation selected: 9, Mode: niriss ami Reset Calcul	te Calculation selected: 9, Mode: niriss ami Reset Calculate
Scare * Backgrounds Instrument Setup Detector Setup Strategy	Scene * Backgrounds Instrument Setup Detector Setup Strategy	
Some * Backgrounds Instrument Batup Detector Solup Subarnay Readout pattern	Scene * Backgrounds Instrument Satup Detector Setup Strategy Imaging Aperture Protometry -	
Scene & Backgrounds Instrument Setup Detector Setup Seammy Readout pattern SUB30 • NISTAND •	Scene * Backgrounds Instrument Setup Detector Setup Strategy Imaging Aperture Protometry - Aperture location Aperture redux	
Scere & Backgrounds Instrument Basiap Datactor Solup Strategy Soluminy Readed pattern SUBSO NISHAPD O Group per Integration O Integrations per exposure Exposures per specification	Scene * Backgrounds Instrument Setup Detector Setup Strategy Imaging Aperture Protometry - - - - Aperture Isocation Aperture radius - - - - 0 Centered on source 2.3 S access -	
Score * Backgrounds Instrument Balage Derector Setup Strategy Subservey Residued pattern NSRAPD • Subservey Residued pattern • NSRAPD • Groups per integration • Integrations per exposure Exposures per specification 10 1 1 0 1 0	Scene * Backgrounds Instrument Setup Detector Setup Strategy Imaging Aperture Protometry - - - - Aperture Sociation Aperture redux - - - - 0 Centered on source 2.3 8 accord - - - 3: Topic 2 - - Perform Bickground - background region -	
Bone * Balagrounds Instrument Statup Detector Statup Strategy Subservy Readout pattern INSIGN - INSIGN - INSIGN - Subservy Readout pattern INSIGN - INSIGN - Insignation - Groups par integration 0 Integrations par exposure Exposures par specification Insignations -	Scene ★ Backgrounds Instrument Statup Detector Selup Strustogy Imaging Aperture Protometry - - - - Aperture Sociation - Aperture reduce - - - 0 Contened on source 2.3 0.8 Broker - - - 3.1 Topi 2 -	
Boars & Backgrounds Instrument Setup Detector Setup Sectory Sectory Rededed pattern SUB0 Instrument Setup Rededed pattern Groups per information Instrument Setup Sectory Groups per information Instrument Setup Instrument Sectory Id Image: Sectory Exposures per specification Id Image: Sectory Image: Sectory Total exposure time: (2000) (21/3/6)	Scene * Backgrounds Instrument Setup Detector Setup Strategy Imaging Aperture Protometry - Aperture tocation - O Centered on source 2.3 * 3: Transp 2 - X; 10.03 arcsec Subtraction Using • O perform Background • •	
Source * Backgrounds Instrument Satup Detector Situp Stratisy Subarray Redoud pattern SU000 Integration oper exposure Exposures per expedication 10 2 1 2 Total informatione: 1 2 1	Scene ★ Backgrounds Instrument Setup Detector Setup Strategy Imaging Aperture Protometry - Aperture Iocation - Aperture Iocation - 3: Target 2 - X; 10: 00 arcsec - Specify Offsets in score Shape X 0 Starget 2 - Starget 2 - Background region - Starget 2 - Background region - Starget 2 - Background region - Background region -	
Scient & Backgrounds Instrument Backg. Detector Sallup Stratingy Subarray Readout pattern Suite 1 Suite 1 Suite approvement time: (2000)(2) (7.8 e) Total integrations: 1	Scene * Backgrounds Indrument Satup Detector Satup Strategy Imaging Aperture Protometry - Aperture sociation - Aperture sociation - O Contender on source 2.3 access 3: Barget 2 - - X, 10 0 arcsec - - X, 0 0 arcsec Statescion Using - V 0 3 access V 0 5 access	
Bone ★ Badropsonds Instrument Statup Detector Statup Strategy Subservey Redout pattern INSTANTO Image: Instanto Statup Image: Insta	Scene * Backgrounds Indurent Statup Detector Selup Strategy Imaging Aperture Protometry - Aperture solution - Aperture reduce 2.3 8 - -	
Score & Backgrounds Instrument Statup Datactor Statup Datactor Subarray Redood pattern Status Bapourse per specification Idat lengonume time: (00.002) (1.78.4)	Scene * Backgrounds Instagrounds Instagrounds Imaging Aperture Protometry - Aperture Instation - Aperture Instation - O centered on source 2.3 3:3: Traps 2 - Aperture Instation - Aperture Instation - Aperture Instation - Background Instation - Backg	
Score & Badegrounds Instrument Satup Detector Satup Strategr Sederary Redoka pattern SUBIO NISDAPO Group par Integration @ Integration par exposure 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sters * Backgrounds Instrument Stelup Detector Stelup Emaigrage Imaging Agenture Problematry - - - Aperture Incation - - - O Centered don source - - - V To do acceled - - - Second Affect In Second - - - Model and acceled - - - Second Affect In Second - - - Not acceled - - - - Second Affect In Second - - - Not acceled - - - -	

iii

continued

AMI calculations in JWST ETC Answers to questions

- i. Create a Target Acquisition calculation for this source
- ii. Create a new calculation to use this scene
- iii. Calculate NGROUPS for an observation with NRM + F430M
- iv. Compare the 'Maximum number of Groups Before Saturation' value with the central pixel value in Groups Before Saturation image
- v. Calculate NINT to get 10⁹ total photons in the exposure.
 - Use photon collect time formula and Extracted Flux in the Reports panel
- vi. What contrast can you reach with 10⁹ total photons?

Maximum Number of Groups Before saturation value is 22 from the Reports panel. Therefore set Groups per integration to 22. (NGROUPS)

- i. Create a Target Acquisition calculation for this source
- ii. Create a new calculation to use this scene
- iii. Calculate NGROUPS for an observation with NRM + F430M
- iv. Compare the 'Maximum number of Groups Before Saturation' value with the central pixel value in Groups Before Saturation image
- v. Calculate NINT to get 10^9 total photons in the exposure.
 - Use photon collect time formula and Extracted Flux in the Reports panel
- vi. What contrast can you reach with 10⁹ total photons?

the NIRISS detector. 🧧

Reports	0			
Calculation	selected: 9, Mo	ode: niriss	ami	
Report	Warnings	Errors	Downloads	
Instrument	Filter/Disperser:			f430m/nul
Extraction	Aperture Position	n (arcsec):		[0.00, 0.00]
Wavelengtl Values (mic	h of Interest used crons):	d to Calcula	ate Scalar	4.28
Size of Ext	raction Aperture	(arcsec):		2.3
Total Time	Required for Stra	ategy (seco	inds):	1.76
Total Expos	sure Time (secor	nds):		1.76
Maximum I	Fraction of Satur	ation:		0.97
Maximum I	Number of Group	os Before S	Saturation:	22
Extracted F	Flux (e-/sec):			809296.80
Standard D	Deviation in Extra	cted Flux (e-/sec):	837.87
Extracted S	Signal-to-Noise r	atio:		965.90
Input Back	ground Surface	Brightness	(MJy/sr):	0.21
Total Back	ground Flux in E	ktraction A	perture (e-/sec):	153.77
Total Sky B (e-/sec):	ackground Flux	in Extraction	on Aperture	153.77
Fraction of Scene:	Total Backgrour	nd due to S	ignal From	0.00
Average Nu	umber of Cosmic	Ravs per	Ramp:	1.3e-4

Maximum number of Groups Before *saturation in the brightest pixel of AMI PSF.

V

AMI calculations in JWST ETC Answers to questions

- i. Create a Target Acquisition calculation for this source
- ii. Create a new calculation to use this scene
- iii. Calculate NGROUPS for an observation with NRM + F430M
- iv. Compare the 'Maximum number of Groups Before Saturation' value with the central pixel value in Groups Before Saturation image
- v. Calculate NINT to get 10⁹ total photons in the exposure.
 - Use photon collect time formula and Extracted Flux in the Reports panel
- vi. What contrast can you reach with 10⁹ total photons?

Total Time Required for Strategy (seconds):	1.76	
Total Exposure Time (seconds):	1.76	
Maximum Fraction of Saturation:	0.97	
Maximum Number of Groups Before Saturation:	22	
Extracted Flux (e-/sec):	809296.80	
Extracted Flux (e-/sec): Standard Deviation in Extracted Flux (e-/sec):	809296.80 837.87	
Extracted Flux (e-/sec): Standard Deviation in Extracted Flux (e-/sec): Extracted Signal-to-Noise ratio:	809296.80 837.87 965.90	

Total photons = flux × NGROUPS × NINT × TFRAME NINT = Total photons/(flux × NGROUPS × TFRAME) = 10^9 / (809296.80 e-/sec × 22 × 0.07544 sec) = 744.5 -> Round up to 745

- i. Create a Target Acquisition calculation for this source
- ii. Create a new calculation to use this scene
- iii. Calculate NGROUPS for an observation with NRM + F430M
- iv. Compare the 'Maximum number of Groups Before Saturation' value with the central pixel value in Groups Before Saturation image
- v. Calculate NINT to get 10⁹ total photons in the exposure.
 - Use photon collect time formula and Extracted Flux in the Reports panel
- vi. What contrast can you reach with 10⁹ total photons?

vi

sqrt(100/(10**9)) = <mark>0.0003</mark>

• F480M

Vegamag =5 gives maximum number of Groups Before Saturation as 7. Vegamag = 5.1 gives maximum number of Groups Before Saturation as 8. Therefore vegamag=5 is the NGROUP=7 bright limit for F480M

Report	Warnings	Errors	Downloads
Instrument	Filter/Disperse	er:	f480m/null
Extraction	Aperture Positi	on (arcsec):	[0.00, 0.00]
Wavelengtl Scalar Valu	n of Interest us es (microns):	ed to Calcul	ate 4.81
Size of Ext	raction Apertur	e (arcsec):	2.5
Total Time	Required for S	trategy (seco	onds): 0.62
Total Expo	sure Time (seco	onds):	0.62
Maximum I	Fraction of Sat	uration:	0.91
Maximum I Saturation:	Number of Gro	ups Before	7
Extracted F	Flux (e-/sec):		2877649.50
Standard D (e-/sec):	eviation in Ext	racted Flux	3275.57
Extracted S	Signal-to-Noise	ratio:	878.52
Input Back (MJy/sr):	ground Surface	e Brightness	0.00
Total Backe Aperture (e	ground Flux in -/sec):	Extraction	0.00
Total Sky E Aperture (e	ackground Flu -/sec):	x in Extraction	on 0.00
Fraction of From Scen	Total Backgrou	und due to S	Signal 0.00

Answers to questions

AMI calculations in JWST ETC

3. Create calculations to calculate NGROUPS and NINT required to get 10⁷ photons from HD37093. Use Vegamag = 5.47 normalized in F380M and vegamag=5.46 normalized in F430M and F480M

Answer:

This is similar to calculations 2, 3 and 4 in NIRISS AMI Examples sample workbook. The only difference is in the total number of photons which will change the number of integrations.

F480M	NGROUPS=11, NINT = 7
F430M	NGROUPS=8, NINT = 8
F380M	NGROUPS=4, NINT = 11

4. Calculate NGROUPS=1 and NGROUPS=2 bright limits (Vegamag) for A0V star observed with F380M.

This is similar to Example 3 in NIRISS AMI Examples. Only the filter is different.

NGROUPS=2 bright limit For F380M

<mark>4.66</mark>

Change the magnitude to 4.65 and look at the warning message

Source Editor					
ID Continuum	Renorm	Lines	Shape	Offset	
Normalize Source Flux Renormalization applie	CDensity Ind after redshi Iongth	ft			
0.001	٢	flam -	lambda	2	© µm
 Normalize in bandp 	ass				
4.66	٢	vegamag	•		
• JWST	NIRISS/IMAG	GING	• F380	• M	
⊖ HST	WFC3/IR	• FO	• M89		
Source selected: 4	4				Reset Save

Reports 😯

Calculation selected: 5, Mode: niriss ami

Report	Warnings	Errors	Downloads			
Instrument Filter/Disperser: f380m/null						
Extraction Aperture Position (arcsec): [0.00, 0.00]						
Wavelength Calculate S	3.83					
Size of Extr	raction Apertur	e (arcsec):	2			
Total Time (seconds):	Required for St	rategy	0.25			
Total Expos	sure Time (seco	onds):	0.25			
Maximum I	Fraction of Satu	uration:	0.99			
Maximum I Saturation:	2					
Extracted F	lux (e-/sec):		6705701.97			
Standard D (e-/sec):	Standard Deviation in Extracted Flux (e-/sec):					
Extracted S	Signal-to-Noise	ratio:	446.59			
Input Back (MJy/sr):	Input Background Surface Brightness (MJy/sr):					
Total Backo Aperture (e	Total Background Flux in Extraction Aperture (e-/sec):					
Total Sky B Extraction	ackground Flu: Aperture (e-/se	x in c):	0.00			
Fraction of Total Background due to						

AMI calculations in JWST ETC

Answers to questions

4. Calculate NGROUPS=1 and NGROUPS=2 bright limits (Vegamag) for A0V star observed with F380M.

This is similar to Example 3 in NIRISS AMI Examples. Only the filter is different.

NGROUPS=1 bright limit for F380M is 4.03. Change the magnitude to 4.02 and look at the central pixel in Groups Before Saturation image.

Scene for Calculation	ID Continuum Renorm Lines Shap	pe Offset	
4: bright limit star scene F3	- 0		
Sources in that Scene 4: bright limit star norm_F3	Normalize Source Flux Density Renormalization applied after redshift		
	0.001 3 flam • lam	nbda 2	e µm
	O Normalize doass		
•	4.03 © vegamag •		
	NIRISS/IMAGING ·	F380M ·	
	HST WFC3/IR F098M	•	

Reports	0		
Calculation	selected: 5, I	Mode: niriss a	ami
Report	Warnings	Errors	Downloads
Instrument	Filter/Disperse	er:	f380m/null
Extraction	Aperture Positi	on (arcsec):	[0.00, 0.00]
Wavelengt Calculate S	h of Interest us Scalar Values (r	ed to nicrons):	3.83
Size of Ext	raction Apertur	e (arcsec):	2
Total Time (seconds):	Required for S	trategy	0.25
Total Expo	sure Time (seco	onds):	0.25
Maximum Fraction of Saturation:			1.77
Maximum Saturation:	Number of Gro	ups Before	1
Extracted I	=lux (e-/sec):		11979653.37
Standard E (e-/sec):	Deviation in Ext	racted Flux	NaN
Extracted \$	Signal-to-Noise	e ratio:	0.00
Input Back (MJy/sr):	ground Surface	e Brightness	0.00
Total Back Aperture (e	ground Flux in e-/sec):	Extraction	0.00
Total Sky E Extraction	Background Flu Aperture (e-/se	x in c):	0.00
Fraction of	Total Backgro	und due to	0.00

 Full saturation: There are 1 pixels saturated* at the end of the first group. These pixels cannot be recovered. *(See footnote in the Saturation image tab.)

* When two neighboring pixels accumulate charge at very different rates, the brighter pixel "spills" photoelectrons on to its neighbor, but the reverse does not occur. This effect becomes pronounced above about 30,000 e in the bright pixel. We miligate this effect in AMI data by setting an effective saturation limit lower than the true non-linearity-based saturation limit for the NIRISS detector. •

Saturation image

Signal limit exceeded in group 2 but not in group 1

[™]When two neighboring pixels accumulate charge at very different rates, the bighter pixel "spike" photoelectrons on to its neighbor, but the reverse does not occur. This effect becomes pronounced above about 30,000 e- in the bight pixel. We mitigate this effect in AM data by setting an effective saturation limit lower than the true non-linearity-based saturation limit for the NIIISS detector. ●

Groups Before Saturation image

Example science program in JWST APT

Get coordinates from GAIA DR2 archive, enter epoch as 2015.5

- Use Fixed Target Resolver to search for target and then manually update coordinates OR
- Select New Fixed target and update information.

	Astronomer's Proposal Tools	Version 27.3.1 JWST PRD: PRI	OOPSSOC-M-025 - JWST Ap	proved Proposal 23 (Ur	nsaved)		
🦅 🧱 🥥		* +	A 2	X		•	
Form Editor Spreadsheet Editor Orbit Planner	Visit Planner Timeline View in Al	adin BOT Target Confirmation	PDF Preview Submission Erro	ors and Warnings		Run All Tools	Stop
New Document					What's New	🍈 Roadmap	😲 Feedback
🔻 🚑 JWST Approved Proposal 23 (Unsa		🖡 1 HD-21	8396 of JWST Approved	Proposal 23 (Uns	aved)		
Proposal Information							
Proposal Description	Number	1					
🎘 Team Expertise	Name in the Proposal	HD-218396			(unique within proposal)		
👤 PI: William Blair	Name for the Archive	HD 218396			(standard resolvable name)		
▼ 🐻 Targets	Category	Star					
 Fixed Targets 1 HD-218396 	Description	+/- Exoplanet System	ns: F stars				
5 2 HD-218172		Choose 1 to 5 items after selecting a	category.				
Øbservations	J2000 Coordinates	(ICRS) RA: 23 07 28.8327	Dec: +21 08	2.53			
Source Contraction Links	Uncertainty	RA: Arcsec	C Dec:	Arcsec ᅌ			
	Proper Motion	RA: 108.30 mas/yr	ᅌ Dec: -49.48	mas/yr ᅌ			
	Epoch	2015.5					
	Annual Parallax (arcsec)						
	Extended	Unknown	Recommended for special	ctroscopy (for advice to data	reduction pipeline)		

Example science program in JWST APT 🍝

Example science program in JWST APT AMI Specific strategies

Adding Special Requirements

Astronoi	omer's Proposal Tools Version 27.3.1 JWST PRD: PRD0PSS0C-M-025 - JWST Approved Proposal 23 (Unsaved)
	📲 🔐 🥟 🤸 斗 🔥 🛷 🗙 🕨 🌦
orm Editor Spreadsheet Editor Orbit Planne	ner Visit Planner Timeline View in Aladin BOT Target Confirmation PDF Preview Submission Errors and Warnings Run All Tools Stop
ew Document 🗢 New 🗢	🛞 What's New 🚳 Roadmap 🖓 Feedback
🍰 JWST Approved Proposal 23 (Unsa	a B HD-2 O Group/Sequence Observations Link
Proposal Information	
Targets	Imber 1 Status: IMPLEMEN
 Observations 	Label HD-218396 Observation list
 Exoplanets in HD 218396 with 	t iment NIRISS \$
HD-218396 (Obs 1)	
P Observation Links	Time interval Days 🗘
	arget 1 HD-218396
	Splitting Distance Numb
	tting: 50.0 Arcsec 1
	Science Tota Exclusive Use Of Instrument
	(secs) 4416 9169 Group Observations 1. 2 Non-interruptible
	plume 899 MB
	NIRISS Aperture Masking Interferometry Special Requirements Comments
	Editing
	Click on Add
	Timing > After Date
	Position Angle Before Date
	Offset Between Dates
	No Parallel Phase
	On Hold After Observation Link
	Target Of Opportunity Croup/Sequence Observations
	Edit Exoplanets in HD 2 Maximum Visit Duration
	Observa A Number Status Duplication Laber Surgice Hund Vide Laber Status Parameters Construction Construction
	Show: Observation
	2 errors & warnings (Click for Details)

Example science program in JWST APT AMI Specific strategies

Create 'NIRISS AMI Observations of Extrasolar Planets around a Host Star' proposal and compare with the existing program.

- Select target HR8799(or HD218396) and calibrator (HD218172).
- Enter/update coordinates, proper motion using information from Gaia DR2 archive, use 2015.5 epoch.
- Create observations for each source using NIRISS AMI template.
- Update exposure parameters using calculations 5 and 7 for Target Acquisition and calculations 3 and 4 for science observations in JWST ETC example science program workbook #23: NIRISS AMI Observations of Extrasolar Planets Around a Host Star.
- Create Group non-interruptible Special Requirement for the target and the calibrator.
- Update PSF Reference Observations field for the target and the calibrator.
- Run visit planner
- Run Smart accounting
- Create the times report (via APT File Export) to look at an ASCII listing of charged times
- Create Target Confirmation Charts and view the observations in Aladin.