

Grism Spectroscopy

Iva Momcheva Support Scientist, WFC3

Summary

- What are grisms & how they work?
- HST & JWST capabilities
- Grism Tutorial

Basic Spectroscopy

How do grisms work?

- a combination of a prism and grating
- light at a chosen central wavelength passes straight through
- one and the same camera can be used both for imaging and spectroscopy
- · grisms are inserted into a collimated beam

image courtesy of Benjamin Weiner

What is SLITLESS spectroscopy?

Fig. 3.— This example shows the process (Panels 1 through 4) of Object Based simulation, where the footprint of the object, shown on the left, is convolved with the spectral trace.

What is SLITLESS spectroscopy?

image courtesy of Benjamin Weiner

The 3D-HST Survey

Colors: F814W(B)/F125W(G)/F160W(R) 3dhst.research.yale.edu

Motivation: What are the grisms good for?

- Rest-frame optical @ 0.5 < z < 2.5: high-z spectroscopic surveys
- Complete samples, high multiplexing : clusters of galaxies
- Spatially resolved emission lines: resolved emission line diagnostics
- Continuum sensitivity (low res): quiescent galaxies
- 10 x redshift accuracy over photometry: clustering, mergers
- Lots of great archival data (pst, 3D-HST just did a data dump: <u>http://</u> <u>3dhst.research.yale.edu</u>)
- Future grism capabilities: JWST/NIRISS, WFIRST, Euclid

HST & JWST

Capabilities

WFC3: Grism Spectroscopy

WFC3/IR - G102 & G141 Grism (zY, JH)

• Always dither!

WFC3/IR - Spatial Scanning Spectroscopy

- Slew telescope during exposure to collect more photons without saturation
 - reduce overheads for time series with short exposures
 - can observe bright objects
 - better spectrophotometry (more photons)
- 0 to 4.8 arcsec per sec with FGS; up to 7.84 arcsec per sec in gyro mode (see WFC3 ISR 2012-08 for recommendations)

see Knutson et al. 2014, Kreidberg et al. 2014 and McCullough et al. 2014

• Overlapping objects a greater issue

WFC3/UV - G280 UV Grism

	Grism	Channel	Wavelength range (nm)	Resolving power ¹	Dispersion (nm/pixel)	Tilt (deg) ²
	G280	UVIS	190–450	70 @ 300 nm	1.3	-3
n	G102	IR	800-1150	210 @ 1000 nm	2.45 ³	+0.7
	G141	IR	1075-1700	130 @ 1400 nm	4.65 ³	+0.5
-		-	· · ·			
+1	Ist order		st order			
				•		
	+4 /	· +3		+2	į	1

- Reference direct imaging: F300X or F200LP
- Dithering not recommended, use CR-SPLIT

ACS - G800L

Future Prospects

Capabilities science capabilities with dramatic improvements in:

- Sensitivity
- Resolution
- Bandpass

JWST NIRISS+FGS

- Big telescope! 0.065" pixels, ~WFC3/IR FOV
- Two grisms rotated by 90°, R=150 (like WFC3/G141)
- Bandpass limiting by crossed filters, 0.9 2.2 μm

WFC3/G141

NIRISS, G150C + F115W

JWST NIRISS+FGS

- Big telescope! 0.065" pixels, ~WFC3/IR FOV
- Two grisms rotated by 90°, R=150 (like WFC3/G141)
- Bandpass limiting by crossed filters, 0.9 2.2 μm

WFC3/G141

NIRISS, G150R + F115W

JWST NIRISS+FGS

- Big telescope! 0.065" pixels, ~WFC3/IR FOV
- Two grisms rotated by 90°, R=150 (like WFC3/G141)
- Bandpass limiting by crossed filters, 0.9 2.2 μm

WFC3/G141

NIRISS, G150R + F150W

JWST NIRISS+FGS

- Big telescope! 0.065" pixels, ~WFC3/IR FOV
- Two grisms rotated by 90°, R=150 (like WFC3/G141)
- Bandpass limiting by crossed filters, 0.9 2.2 μm

WFC3/G141

NIRISS, G150R + F200W

Full Spectrum

Contam cleaned

Emission line map

Full Spectrum

Contam cleaned

Emission line map

Simulation by G. Brammer https://github.com/gbrammer/grizli/

JWST NIRCAM Long Wave

- Big telescope! 0.065" pixels, 2 detectors, FOV~4.4' x 2.2'
- Two grisms rotated by 90°, R=1500!
- Bandpass limiting by crossed filters, 2.4 5.0 μm

 NIRCam F356W
-

Simulation by G. Brammer/https://github.com/gbrammer/grizli/

JWST NIRCAM Long Wave

- Big telescope! 0.065" pixels, 2 detectors, FOV~4.4' x 2.2'
- Two grisms rotated by 90°, R=1500!
- Bandpass limiting by crossed filters, **2.4 5.0 μm**

Smit+2015

WFIRST GRS grism

- 0.28 deg² at a shot, 2400 deg² (!) High Latitude Survey (z for BAO, RSD, public survey)
- 2.4m telescope (≈HST)
- 1.3–1.9 μ m, R = 4 x G141 (e.g., just resolves Ha, [NII])

WFC3/G141

WFIRST: 0.28 deg² / pointing, 2400 deg² total

Grism Tutorial

Grizli

GOODS-S-34_19576 323 H_{140} =21.76 z_{spec} =0.999 z_{phot} =0.897 z_{gris} =1.004 Δz = 0.0027

Grism Processing Example

https://github.com/gbrammer/grizli

