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ABSTRACT

We describe the properties of three independently-developed software packages used to sim-

ulate slitless spectroscopic data from the Hubble Space Telescope. The first, aXe/aXeSIM,

was developed by the ST-ECF for ACS and later adapted for use with NICMOS and WFC3

data, and is officially supported by STScI for the HST user community. The other two

packages were developed for personal use by N. Pirzkal and by G. Brammer. In this docu-

ment we describe and compare the capabilities, key assumptions, outputs and runtime of the

three separate software packages, which define the current state-of-the art for the analysis of

space-based slitless spectroscopic data.

1. Grism data

Grism observations are obtained by inserting a dispersive element in the light path. In

normal imaging mode, the detector provides a pixelized sampling of some scene:

(1)I(x, y) =
∫
f(x, y, λ)S(λ) dλ

where I(x, y) refers to the direct image, f(x, y, λ) is intrinsic spectrum at each pixel in the

scene, and S(λ) is the sensitivity curve (which in principle depends on detector position as

Copyright c© 2014 The Association of Universities for Research in Astronomy, Inc. All Rights Reserved.



Technical Instrument Report WFC3 2014-XXX Draft: 17/10/2014 at 1:59pm

=⊗

Fig. 1.— A simplified view of the relation between the information provided by the direct

image (left), the transfer function of the dispersive element, the trace (middle), and the

convolution of the two. If one ignores flat-fielding and wavelength dependence of the shape

of the object, this can be considered (and simulated using) a 2D convolution.

well). The dispersive element transforms f(x, y, λ) by redistributing the λ dimension. As

described below, this transformation is field-dependent and can be encoded in a series of

spatially-varying polynomials that have been calibrated for both WFC3 and ACS.

In the slitless case, the disperser defines a spectral trace, essentially mapping a given

wavelength λ onto a unique x′,y′ position on the detector. Such a trace is shown in Figure 1.

Assuming no change in sensitivity as a function of position, and ignoring pixel flat-fielding,

a dispersed image can be thought of a the convolution of the direct image with the spectra

trace:

(2)G(x, y) = f(x, y, λ)⊗ tr(λ).

Slitless grism observations can therefore be simulated starting from a set of direct im-

ages, which provide information about the field and the objects within it, and sufficient

understanding of the properties of the dispersing element. All of the existing analysis soft-

ware we describe below currently rely on a set of direct observations of the field, or at least

a catalog of objects, complete with their size and brightness.

2. Contamination

Contamination is a drawback of slitless spectroscopy. First, the lack of slits results in

the subtle effect that the effective resolution of the disperser is lowered by the size of the

footprint of the objects along the dispersion direction. Hence, a larger object will produce a

spectrum that is smoothed out. This is visible in Figure 1 where we show that the leftmost

and rightmost pixels of the source, shown on the left of the figure, are projected onto the

same sets of pixels on the right-hand side of the Figure. This self contamination depends

on the direction of the dispersion and orientation of the source. A non-symmetrical source

will therefore produce spectra of different effective resolution at different position angles on

the sky. Second, spectra of neighboring objects can contaminate one another and this is

– 2 –



Technical Instrument Report WFC3 2014-XXX Draft: 17/10/2014 at 1:59pm

again sensitive to the orientation at which the data are obtained. Figure 2 illustrates this

by showing three distinct sources, shown in blue, red and green, dispersed at three position

angles. At some orientations, some spectrum remains uncontaminated (i.e. green object in

panels 1 and 2) while it is strongly contaminated at some other orientation (e.g., the green

object in panel 3). As shown in Figure 2, keeping track of the contamination levels require a

careful book keeping of the objects’ location, their shape/footprint as well as their spectral

characteristics.

3. Grism Analysis Software

There are currently three different simulation codes being used within the WFC3 Grism

Group: aXe/aXeSIM, threedhst, and NPSpec. All three use the same WFC3 calibration

products that describe the dispersion and sensitivity of the WFC3 grisms. aXe/aXeSIM can

handle grism and prism (e.g., highly non-linear wavelength dispersion) dispersive elements.

aXe/aXeSIM are both available to the users. threedhst, which is Python based, was devel-

oped independently by the 3D-HST team and is not supported at STScI. NPSpec is a Python

implementation of a simulation kernel that allows one to perform quick simulations for the

purpose of SED fitting. The latter is not directly available to the user community and was

used to gain experience with direct 2D SED fitting of observed spectra.

The three codes described in this document share common configuration files (e.g. aXe

Configuration Files) that define how a given pixel in the direct image is dispersed into the

various grism orders (the “trace”), both geometrically (the location of the trace on the image)

and spectro-photometrically (the intensity of the spectrum in electrons per second per pixel).

The geometric parameters that define the trace relative to a reference pixel in the direct

image are

• DYDX: Pixel offset in y of the center of the trace as a function of the x distance from

the reference pixel (see §A4).

• DLDP: Effective wavelength of the pixel defined along the trace (see §A6).

These parameters are stored in the configuration files as polynomials whose coefficients can

vary in both x and y dimensions across the instrumental field of view. The polynomials are

defined in the nominal distorted frame of the HST science instruments (i.e., FLT images

produced by the ACS and WFC3 calibration pipelines). A more complete description of

these polynomials is presented in Appendix A.

The flux calibration of the spectral orders is defined in separate sensitivity files with
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Fig. 2.— A simplified view of the complex relation between object morphologies, spatial

distribution and spectral contamination when slitless observations are made at different

position angles. In each panel, three objects with different morphologies are shown at left

(blue, green and red) and their respective spectra are shown dispersed toward the right. The

middle panel shows the dispersion when the field is rotated 180 degrees with respect to the

top panel while the bottom panel shows the result of a 90 degree rotation.

the sensitivity and its corresponding uncertainty in units of fλ (erg/s/cm2/Å) provided as a

function of wavelength. Though the grism dispersion can vary across the instrumental field

of view, the sensitivity curve is currently assumed to be constant across the ACS fields. In

WFC3, the variation of the sensitivity across the field of view is corrected by the grism-

– 4 –



Technical Instrument Report WFC3 2014-XXX Draft: 17/10/2014 at 1:59pm

Fig. 3.— This example shows the process (Panels 1 through 4) of Object Based simulation,

where the footprint of the object, shown on the left, is convolved with the spectral trace.

specific flat-field calibration files.

3.1. Two approaches of the existing software

The simulation software currently available approach the problem in two fundamentally

different ways: disperse the entire object at once (Object Based), or disperse each input

pixel separately (Pixel Based).

3.1.1. Object based

The Object-Based method generates a simulated dispersed spectrum of a source by

convolving the trace and the footprint of the object. In this approach, the one dimensional

spectrum of the source is first generated in units of e−/s. This spectrum is computed by

multiplying the assumed intrinsic spectrum of the object by the sensitivity function. This

spectrum is dropped onto an array using the DYDX relation and then simply convolved

with the footprint of the object. This footprint can take several forms. It can be a sim-

ple Gaussian description of the objects (based, for example, on the SExtractor A IMAGE,

B IMAGE, THETA IMAGE parameters). It can also be a normalized stamp image of the

object (generated by combing a SExtractor segmenation map and a direct image of the ob-

ject). The convolution can then be either direct, which allows for changing the convolution

kernel as a function of wavelength, or it can be FFT based. Figure 3 illustrates this method.

Currently, aXe/aXeSIM and NPspec use this method.
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Fig. 4.— This example shows the process (Panels 1 through 4) of Pixel Based simulation,

where individual pixels, shown on the left, are convolved with the spectral trace.

3.1.2. Pixel based

The other approach, Pixel Based, treats each pixel as a separate entity and the trace

and wavelength relations are obtained and mapped onto the simulated image. This allows

for individual pixels to have different colors/spectra as a different spectrum can be assigned

to each pixel in the direct image.

4. Use of Simulations

Currently, we are aware of simulations of grism observations to have been used for the

following purpose:

1. To obtain accurate count rate estimates for faint sources and hence serve

as a realistic ETC

The WFC3 Exposure Time Calculator supports the G102 and G141 grism modes but

does so in an approximate manner. Users have found in the past that a full 2D

simulation is preferred to account for the signal dilution that occurs with different

(extended) object morphologies.

2. To estimate the amount of contamination in extracted spectra

Contamination of overlapping spectra from neighboring objects is an important prob-

lem that must be addressed with slitless spectroscopy. The lack of slits results in every

source in the field producing spectra (more than one since multiple orders are present).

Software packages such as aXe use simulations to estimate this contamination. The

quality of this estimate is ultimately limited by the amount of information that is avail-

able for every single source in the field (e.g. their location, morphology and spectral
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characteristics). Simulations have hence been an intrinsic part of the extraction and

calibration process from the beginning, although in large part the process has been

hidden from users.

3. To examine contamination for a given position angle on the sky

The amount of contamination affecting the spectrum of a source is determined by

the brightness, location and spectral characteristics of neighboring sources and by the

orientation of the field since spectra are dispersed in a specific direction (in the case of

WFC3, roughly aligned with the x-axis; see Figure 2).

4. To directly fit models to 2D spectra to estimate redshift and other galaxy

stellar population models

As computers have become faster it has become more attractive to fit models to

dispersed spectra directly. This removes the need to extract and calibrate spectra

(which is akin to a de-convolution process) when estimating quantities such as spectro-

photometric redshifts (using both broadband and spectral information).

4.1. “aXe/aXeSIM/NPSpec”

The aXe software package contains all the code required to generate accurate simulations

of a field. aXe, by design, is an end-to-end solution to spectral extraction and calibration. aXe

was developed by N. Pirzkal at ST-ECF (Space Telescope European Coordinating Facility)

in 2001 specifically to extract and calibrate ACS sitless spectra (WFC, HRC, grism and

prims). It was further improved at ST-ECF by M. Kümmel until it was formally handed to

STScI/OED when ST-ECF was shut down. aXe was designed to be a generalized, “pipeline-

able” package written in C that followed on the footsteps of NICMOSlook and CALNIC-C,

developed by W. Freudling. Many of the features found in aXe were based on lessons learned

from NICMOSlook. As such, its inputs are high-level products, such as AstroDrizzled mosaics

of a field and SExtractor catalogs. The end result it produces are 2D and 1D extracted,

rectified and calibrated spectra. The aXe package is run as a black-box and the user has little

control on the low level operations aXe performs, and there are only a limited number of ways

the aXe operations can be customized with or without the addition of custom code. The aXe

process is expected to be essentially hands-off and to can take a significant amount of time to

execute (ten of minutes to hours). aXeSIM, written around aXe’s internal algorithms, is based

on the same principles. aXeSIM, using its Objects Based approach, offers a comprehensive

approach to generate dispersed simulations of an entire field, perhaps with thousands of

objects. aXeSIM was not designed to generate single object simulations quickly.

The Objects Based approach was also implemented in pure Python code, dubbed
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NPSpec. This implementation was created with the specific task of 2D in-situ fitting of

model spectra (e.g., Bruzual and Charlot 2003 spectral synthesis models) to an observed

spectrum in an HST pipeline calibrated FLT file. The main goal was to create a small

kernel of Python code that could create reasonable 2D simulations of a spectrum that could

then be compared to the observation and used as part as a larger Markov Chain Monte Carlo

approach. The code followed the same approach as aXe and produced similar results, using

either stamp images and direct convolution or gaussian kernels and FFT convolution. This

prototype showed that a pure Python approach could easily generate a simulated spectrum

in approximately 30 ms, when using FFT and gaussian kernels.

The following is an illustrative list of the input products needed by aXe and aXeSIM

and the output products they produce. Although aXe and aXeSIM are meant to be high

level packages, a significant amount of work is required to assemble some of the needed data

products. Broadband mosaics of the field need to be created, SExtractor catalogs need to be

generated and merged into a master catalog, “stamp” images need to be created if anything

more complex than simple gaussian morphologies are required:

Input/output products for aXeSIM

Inputs

• SExtractor catalog with multiple broad-band magnitudes

• Optional:“Stamp” image (broad band images and segmentation footprint) for each

object to simulate

• aXe configuration file of the G102 or G141 WFC3 grism.

Output

• 2D FITS file containing the simulated image of the entire field, in units of electrons/s

• Optional: Extracted 2D/1D spectra for objects down to a magnitude limit in the direct

images.

Running time

• Approximately 0.05 second per object and spectral order. A field containing 3168

objects and a total of 8662 spectral order takes approximately 8 minutes to simulate

(not including the time required to generate stamp images)

• An aXe extraction doubles this time per object for a simple extraction.
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Input/output products for NPSpec

Inputs

• Broad-band magnitudes for the source to simulate

• “Stamp” image of the object (broad band images and segmentation footprint) to sim-

ulate [optional]

• aXe configuration file of the G102 or G141 WFC3 grism.

Outputs

• 2D numeric Python array containing the expected count rate per pixel for the simulated

spectrum.

Running Time

• A single simulated spectrum requires approximately 0.03 seconds.

4.2. “threedhst”

G. Brammer developed a pipeline independent of aXe (but that relies on the aXe con-

figuration files) to process the WFC3/IR G141 spectra obtained by the 3D-HST treasury

program (GO 12177 & 12328; PI: van Dokkum; see Brammer et al. 2012). At the heart

of this pipeline, dubbed threedhst, is the “Pixel-Based” approach demonstrated in Fig. 4

with the spatial template taken from either the direct imaging itself or, optionally, an aligned

reference image (for example, a deeper wide-field mosaic). In practice, the pipeline presently

assumes pixels grouped within a segmentation region of a particular object share a common

spectrum, so in some sense it is a hybrid of the two methods described above. However,

it would be straightforward (i.e., additional bookkeeping) to extend the algorithm for an

arbitrary separation of independent spatial components (e.g., a bulge and a disk of a distant

galaxy).

The threedhst pipeline has been designed for speed and flexibility in generating model

two-dimensional grism spectra from arbitrary input spectra, for example, a galaxy contin-

uum plus emission line template. The model spectra can then be compared directly to the

observed 2D grism spectra, and fits can be evaluated based on the individual pixel uncer-

tainties as defined by the instrument noise model and unaffected by the correlated noise

that results from drizzling. The computation of a model 2D WFC3/G141 spectrum from a

higher-resolution input template takes ∼3.5 ms for a (NY, NX) = (16, 143) spectral cutout
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(2′′ along the y spatial axis). The threedhst pipeline includes an automated redshift fitting

algorithm that can account for additional redshift constraints from broad-band photometry

of a given object. The algorithm, which evaluates galaxy continuum plus emission-line tem-

plate fits computed on a high-resolution redshift grid takes∼10 s per object, with the runtime

depending on the number of spectral templates and the size of the thumbnail used as the

spatial kernel. We have recently explored implementing the Object-Based model-generation

method in the threedhst pipeline, finding substantial speed improvement in generating the

model spectra: models for the (16,143) spectral cutout can be generated in just 0.2 ms.

These models are essentially indistinguishable from those computed with the Pixel-Based

approach, given that both methods currently assume that all pixels within the spatial kernel

share the same spectrum.

Input/output products for threedhst

Inputs

• FLT images from the direct and grism exposures. The FLT images are WCS-aligned

and background-subtracted before they are used for modelling and extracting the grism

spectra.

• SExtractor catalog and segmentagion image [Optional. If not provided, will be gener-

ated directly from the FLT images.]

• aXe configuration file of the G102 or G141 WFC3 grism.

• Optional: aligned deep image that can be used as the spatial reference in place of the

usually short direct image exposures

• Optional: photometric catalogs with constraints on galaxy redshifts

Outputs

• 2D FITS file containing the simulated image of the entire field, in units of electrons/s.

The simulated image is used as the contamination model for individual object spectra

that are extracted from the field.

• Optional: Extracted 2D/1D spectra for objects down to a magnitude limit in the direct

image.

• Optional: Fits to redshifts and emission line strengths of individual objects.

Running time

The following run times were computed for a test case running a full 2D model of a single

G141 pointing and extracting and fitting a single object in that pointing. Note that these
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calculations assume fitting on the native WFC3 pixel grid. Each visit of the 3D-HST survey

(and other similar programs) obtains 4 dithered exposures in a 2×2 box pattern that samples

the WFC3 pixel at half-pixel intervals. Fits for the 3D-HST survey involve interlacing the

direct images to a 2 × 2 grid so the run times can be ∼4 times longer than the numbers

reported here (analogous to fitting the four exposures simultaneously).

• Generate a full 2D model for a test pointing with 500 objects at H140 < 26.5 . . .106 s

• Extract 2D+1D spectra of a single object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4 s

• Fit the object redshift on a redshift grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 s

• Monte-Carlo fit for the emission line strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 s

5. Example comparison

We have run the three grism analysis pipelines on a common dataset to facilitate compar-

ison between them. The comparison dataset, IBHM521, is taken from the 3D-HST program

(GO 13238). This visit contains four dithered direct image exposures in the F140W filter

(texp = 203 s) each followed by a single G141 exposure (texp = 1103 s) taken at the same

position without moving the telescope. The pointing lies within the larger COSMOS survey

field imaged in a variety of ACS and WFC3 bands. Using the larger image mosaics of the

COSMOS field, all three codes can be used to model the grism spectra of objects near the

edges of the detector field of view whose direct images fall off of the F140W imaging of the

visit itself.

Examples of two-dimensional spectra of stars and galaxies as modeled with the different

codes are shown in Figs.5 and 6 below. The top two panels show the observed direct and

grism images. Note that the direct image has been shifted for the display; the position of the

direct image in the FLT frame is ∼40 pixels to the left of the start of the G141 +1st order

spectrum. The bottom panels show residuals computed with the aXeSIM and threedhst

pipelines. With aXeSIM, we compute models for both Gaussian spatial profiles (“gauss”)

and for spatial profiles as extracted from the direct image itself within a segmentation region

around an object (“seg”). The spectral shape is also modeled in two ways with aXeSIM, the

first assuming a flat fλ spectrum with the normalization determined from the F140W direct

image, and the second (“All”) with a continuum shape determined from the additional ancil-

lary imaging available in this field (WFC3/IR F125W, F140W, and F160W). The threedhst

model uses a segmentation-based approach like aXe but can additionally refine the spectral

1http://archive.stsci.edu/hst/search.php?action=Search&sci_data_set_name=IBHM52*
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shape based on the observed spectrum itself. The segmentation-based approach is clearly

preferable to assuming Gaussian object profiles, and even more so for point sources.

6. A Comment on Next Generation Grism Analysis Software

A key limitation to the methods presented above is dealing with deblending (or contam-

ination) of overlapping spectra and optimally combining information from multiple orienta-

tions or positions. While aXe uses the same engine as aXeSIM to quantitatively estimates

the amount of spectral contamination, this information is not used to deblend, or clean,

calibrated spectra. This information is instead provided solely as a (fixed) quantitative es-

timate of the contamination. At present, the WFC3 Grism Group is exploring two different

(but related) methods based on their computational feasibility, fundamental assumptions,

and limiting systematics. The first method, forward modeling, essentially seeks to predict

a given dispersed image based on the properties of the sources (such as number/position of

sources and their spectra). These properties are optimized by comparing with the observed

dispersed image, but typically the positions are held fixed (to those seen in the direct im-

age). The second method, linear reconstruction, attempts to reconstruct the optimal spectra

by inversion using least-squares techniques. Each approach has unique pros and cons, and

neither seems to be inherently superior at this stage. We have just begun developing pro-

totypes of these tools which are not necessarily built using previously discussed pipelines or

configurations, indeed we leave open the possibility that new calibrations, reference files, or

descriptions of the grism images will be needed for these tools.
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Fig. 5.— 2D spectrum of a star. The top panel shows the F140W image offset to put the

object at the center of the panel. The second panel shows the observed G141 spectrum.

The red outline shows the subset of pixels used in the distribution of residuals shown in the

lower right panel. The bottom five 2D spectrum panels show the observed−model residuals

for the modeling codes and input assumptions, as labeled. The top right panel shows the

spatial profile of the 2D spectrum collapsed along the x (wavelength) axis for the observed

(filled gray) and model (colored lines) spectra.
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Fig. 6.— 2D spectrum of an extended galaxy. The panels are the same as Fig. 6. The fit

residuals are somewhat better than for the stellar model because PSF and discrete pixel grid

effects are less important for the extended galaxy.
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A. The aXe Configuration File

aXe, aXeSIM, NPspec and threedsht rely on an aXe configuration file to describe how

to simulate and extract HST slitless spectra. The aXe configuration file is based on the

assumption that every aspect of the instrument calibration can be parametrized as nth order

polynomial. The field dependence (how the dispersion varies across the detector) is also

assumed to be smooth varying and to be approximated as a 2D polynomial function of the

mth order. While multiple orders are treated independently in a single aXe configuration file,

a separate aXe configuration file is required for each detector of each instrument. The two

WFC detectors on the ACS instrument, for example, are treated independently. Overlaps

bettween multiple detectors of an instrument is not usually a problem as the dispersion is

in the x-direction while the detectors are stacked in the y-direction. aXe does not attempt

to combine spectra obtained using both detectors, for example when large dithers in the

y-direction are used.

For the purpose of simulations, the aXe configuration file is used to identify the various

spectral orders to be simulated (which are referred as “BEAMs” in the aXe configuration

file). For a given order (beam “A” is usually associated with the brightest +1st order),

there are two parameters of interest: DYDX and DLDP. They describe the spectral trace

and its wavelength dependence, respectively. DYDX produces the expected offset dy in the

y-direction with respect to the y-position of the source (as measured through an imaging

filter without the dispersing element) as a function of dx, the offset between source and a

given column in the x-direction:

(A1)dy = a0 + a1 · dx+ a2 · dx2 + ...+ an · dxn,

where dy is the offset (in pixels) between the centroid of the trace and the y position (pixel j)

of the source, dx is the offset in the x-direction between a particular pixel on the trace and

the x-position (pixel i) of the source (Figure 7). The order of the polynomial is n, with

n = 1 corresponding to a simple linear dispersion. If the instrument had no field dependence

and dispersed all spectra in the same way across the field of view, the coefficients an would

be simple constants. In the case of WFC3, however, there is a significant amount of field

dependence of the trace and this is parametrized by allowing each value of an to itself be a

2D polynomial that is a function of the source position (i,j) on the detector. In the case of

a second order 2D field dependence, we have

(A2)an(i, j) = bn,0 + bn,1 · i+ bn,2 · j + bn,3 · i2 + bn,4 · i · j + bn,5 · j2.

A second order 2D field dependent representation of a linear (n = 1) dispersion therefore
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Fig. 7.— The slitless trace. The object, as it would be visible using a broad band filter,

is shown at the bottom left and has pixel coordinates of (i,j). We also show on the same

Figure the resulting spectrum as produced by the G141 grism. The measurements quantities

dx and dy used in Equations A1, A2 and A3 are shown.
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Fig. 8.— The wavelength calibration. The wavelength along the trace is computed as a

function of the dp, the arc along the trace from the reference pixel (point on the trace with

the same x-coordinate as the reference pixel) and a given position on the trace.

becomes

(A3)dy(i, j, dx) = b0,0 + b0,1 · i+ b0,2 · j + b0,3 · i2 + b0,4 · i · j + b0,5 · j2
+ dx (b1,0 + b1,1 · i+ b1,2 · j + b1,3 · i2 + b1,4 · i · j + b1,5 · j2),

where we have explicitly expressed dy as a function of the source position (i,j) and of the

x-offset (dx) between the source and a particular point on the spectrum.

The description of the wavelength dependence along the trace DLDP is similar and

parametrizes the difference in wavelength between the reference point on the trace and a

given position on the trace.

(A4)λ = α0 + α1 · dp+ α2 · dp2 + ...+ αn · dpn

where again, a 2D field dependence implies

(A5)αn(i, j) = βn,0 + βn,1 · i+ βn,2 · j + βn,3 · i2 + βn,4 · i · j + βn,5 · j2

and we have, in the case of a linear wavelength dispersion solution,

(A6)λ(i, j, dp) = β0,0 + β0,1 · i+ β0,2 · j + β0,3 · i2 + β0,4 · i · j + β0,5 · j2
+ dp (β1,0 + β1,1 · i+ β1,2 · j + β1,3 · i2 + β1,4 · i · j + β1,5 · j2)
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The aXe configuration file encodes the bn,m parameters of Equation A3 (describing the

trace) in DYDX and the βn,m parameters of Equation A6 (describing the wavelength dis-

persion) in DLDP. To be precise, dp in the preceding equations is the arc-length along the

trace, given as:

(A7)dp(X) =
∫ X

0

√
1 + y′(x)2 dx

where y′(x) = dy/dx. For n ≤ 2, this integral has analytic solutions, which we utilize in the

example code below. For higher order dy/dx trace shapes, such as the curved orders of the

WFC3/UVIS G280 grism, we evaluate this integral numerically (which can be very slow).

B. Code to compute the spectral trace

We provide the Python code below (axe_disperse.py) to demonstrate reading the aXe-

formatted configuration files and computing the spatially-dependent dispersion parameters

DYDX and DLDP (§A). Updates to the code (and updates to this document itself) can be

found at:

https://github.com/WFC3Grism/CodeDescription/.

1 """

2 Demonstrate aXe trace polynomials.

3

4 v1.0 - October 14, 2014 (G. Brammer , N. Pirzkal , R. Ryan)

5

6 """

7 import numpy as np

8

9 class aXeConf ():

10 def __init__(self , conf_file=’WFC3.IR.G141.V2.5. conf’):

11

12 if conf_file is not None:

13 self.conf = self.read_conf_file(conf_file)

14 self.conf_file = conf_file

15 self.count_beam_orders ()

16

17 ## Global XOFF/YOFF offsets

18 if ’XOFF’ in self.conf.keys():

19 self.xoff = np.float(conf[’XOFF’])
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20 else:

21 self.xoff = 0.

22

23 if ’YOFF’ in self.conf.keys():

24 self.yoff = np.float(conf[’YOFF’])

25 else:

26 self.yoff = 0.

27

28 def read_conf_file(self , conf_file=’WFC3.IR.G141.V2.5. conf’):

29 """

30 Read an aXe config file , convert floats and arrays

31 """

32 from collections import OrderedDict

33

34 conf = OrderedDict ()

35 lines = open(conf_file).readlines ()

36 for line in lines:

37 ## empty / commented lines

38 if (line.startswith(’#’)) | (line.strip() == ’’) | (’"’ in

line):

39 continue

40

41 ## split the line , taking out ; and # comments

42 spl = line.split(’;’)[0]. split(’#’)[0]. split()

43 param = spl[0]

44 if len(spl) > 2:

45 value = np.cast[float ](spl [1:])

46 else:

47 try:

48 value = float(spl [1])

49 except:

50 value = spl[1]

51

52 conf[param] = value

53

54 return conf

55

56 def count_beam_orders(self):

57 """

58 Get the maximum polynomial order in DYDX or DLDP for each beam

59 """

60 self.orders = {}

61 for beam in [’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’]:

62 order = 0

63 while ’DYDX_%s_%d’ %(beam , order) in self.conf.keys():

64 order += 1
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65

66 while ’DLDP_%s_%d’ %(beam , order) in self.conf.keys():

67 order += 1

68

69 self.orders[beam] = order -1

70

71 def field_dependent(self , xi , yi , coeffs):

72 """

73 aXe field -dependent coefficients

74 """

75 ## number of coefficients for a given polynomial order

76 ## 1:1, 2:3, 3:6, 4:10, order:order *(order +1)/2

77 if isinstance(coeffs , float):

78 order = 1

79 else:

80 order = int(-1+np.sqrt (1+8* len(coeffs)))/2

81

82 ## Build polynomial terms array

83 ## $a = a_0+a_1x_i+a_2y_i+a_3x_i ^2+ a_4x_iy_i+a_5yi ^2+$ ...

84 xy = []

85 for p in range(order):

86 for px in range(p+1):

87 xy.append(xi**(p-px)*yi**(px))

88

89 ## Evaluate the polynomial , allowing for N-dimensional inputs

90 a = np.sum((np.array(xy).T*coeffs).T, axis =0)

91

92 return a

93

94 def get_beam_trace(self , x=507, y=507, dx=0., beam=’A’):

95 """

96 Get an aXe beam trace for an input reference pixel and

97 list of output x pixels dx

98 """

99 NORDER = self.orders[beam ]+1

100

101 xi , yi = x-self.xoff , y-self.yoff

102 xoff_beam = self.field_dependent(xi, yi, self.conf[’XOFF_%s’ %(

beam)])

103 yoff_beam = self.field_dependent(xi, yi, self.conf[’YOFF_%s’ %(

beam)])

104

105 ## y offset of trace (DYDX)

106 dydx = np.zeros(NORDER) #0 #+1.e-80

107 for i in range(NORDER):

108 if ’DYDX_%s_%d’ %(beam , i) in self.conf.keys():
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109 coeffs = self.conf[’DYDX_%s_%d’ %(beam , i)]

110 dydx[i] = self.field_dependent(xi , yi , coeffs)

111

112 # $dy = dydx_0+dydx_1 dx+dydx_2 dx^2+$ ...

113 dy = yoff_beam

114 for i in range(NORDER):

115 dy += dydx[i]*(dx -xoff_beam)**i

116

117 ## wavelength solution

118 dldp = np.zeros(NORDER)

119 for i in range(NORDER):

120 if ’DLDP_%s_%d’ %(beam , i) in self.conf.keys():

121 coeffs = self.conf[’DLDP_%s_%d’ %(beam , i)]

122 dldp[i] = self.field_dependent(xi , yi , coeffs)

123

124 ## dp is the arc length along the trace

125 ## $\lambda = dldp_0 + dldp_1 dp + dldp_2 dp^2$ ...

126 if self.conf[’DYDX_ORDER_%s’ %(beam)] == 0: ## dy=0

127 dp = dx

128 elif self.conf[’DYDX_ORDER_%s’ %(beam)] == 1: ## constant dy/dx

129 dp = np.sqrt (1+ dydx [1]**2) *(dx -xoff_beam)

130 elif self.conf[’DYDX_ORDER_%s’ %(beam)] == 2: ## quadratic trace

131 u0 = dydx [1]+2* dydx [2]*(0)

132 dp0 = (u0*np.sqrt (1+u0**2)+np.arcsinh(u0))/(4* dydx [2])

133 u = dydx [1]+2* dydx [2]*(dx-xoff_beam)

134 dp = (u*np.sqrt (1+u**2)+np.arcsinh(u))/(4* dydx [2])-dp0

135 else:

136 ## high order shape , numerical integration along trace

137 ## (this can be slow)

138 xmin = np.minimum ((dx -xoff_beam).min(), 0)

139 xmax = np.maximum ((dx -xoff_beam).max(), 0)

140 xfull = np.arange(xmin , xmax)

141 dyfull = 0

142 for i in range(1, NORDER):

143 dyfull += i*dydx[i]*(xfull -0.5) **(i-1)

144

145 ## Integrate from 0 to dx / -dx

146 dpfull = xfull *0.

147 lt0 = xfull <= 0

148 if lt0.sum() > 1:

149 dpfull[lt0] = np.cumsum(np.sqrt (1+ dyfull[lt0 ][:: -1]**2))

[:: -1]

150 dpfull[lt0] *= -1

151 #

152 gt0 = xfull >= 0

153 if gt0.sum() > 0:
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154 dpfull[gt0] = np.cumsum(np.sqrt (1+ dyfull[gt0 ]**2))

155

156 dp = np.interp(dx -xoff_beam , xfull , dpfull)

157

158 ## Evaluate dldp

159 lam = dp*0.

160 for i in range(NORDER):

161 lam += dldp[i]*dp**i

162

163 return dy , lam

164

165 def show_beams(self , beams=[’E’,’D’,’C’,’B’,’A’]):

166 """

167 Make a demo plot of the beams of a given configuration file

168 """

169 import matplotlib.pyplot as plt

170

171 x0 , x1 = 507, 507

172 dx = np.arange ( -800 ,1200)

173

174 if ’WFC3.UV’ in self.conf_file:

175 x0, x1 = 2073, 250

176 dx = np.arange ( -1200 ,1200)

177 if ’G800L’ in self.conf_file:

178 x0, x1 = 2124, 1024

179 dx = np.arange ( -1200 ,1200)

180

181 s=200 # marker size

182 fig = plt.figure(figsize =[10 ,3])

183 plt.scatter (0,0,marker=’s’, s=s, color=’black’, edgecolor=’0.8’,

184 label=’Direct ’)

185

186 for beam in beams:

187 if ’XOFF_%s’ %(beam) not in self.conf.keys():

188 continue

189

190 xoff = self.field_dependent(x0 , x1 , self.conf[’XOFF_%s’ %(beam

)])

191 dy, lam = self.get_beam_trace(x0, x1, dx=dx, beam=beam)

192 xlim = self.conf[’BEAM%s’ %(beam)]

193 ok = (dx >= xlim [0]) & (dx <= xlim [1])

194 plt.scatter(dx[ok]+xoff , dy[ok], c=lam[ok]/1.e4 , marker=’s’, s

=s,

195 alpha =0.5, edgecolor=’None’)

196 plt.text(np.median(dx[ok]), np.median(dy[ok])+1, beam ,

197 ha=’center ’, va=’center ’, fontsize =14)
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198 print ’Beam %s, lambda =(%.1f - %.1f)’ %(beam , lam[ok].min(),

199 lam[ok].max())

200

201 plt.grid()

202 plt.xlabel(r’$\Delta x$’)

203 plt.ylabel(r’$\Delta y$’)

204

205 cb = plt.colorbar(pad =0.01, fraction =0.05)

206 cb.set_label(r’$\lambda \,(\mu\mathrm{m})$’)

207 plt.title(self.conf_file)

208 plt.tight_layout ()

209 plt.savefig(’%s.pdf’ %(self.conf_file))
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