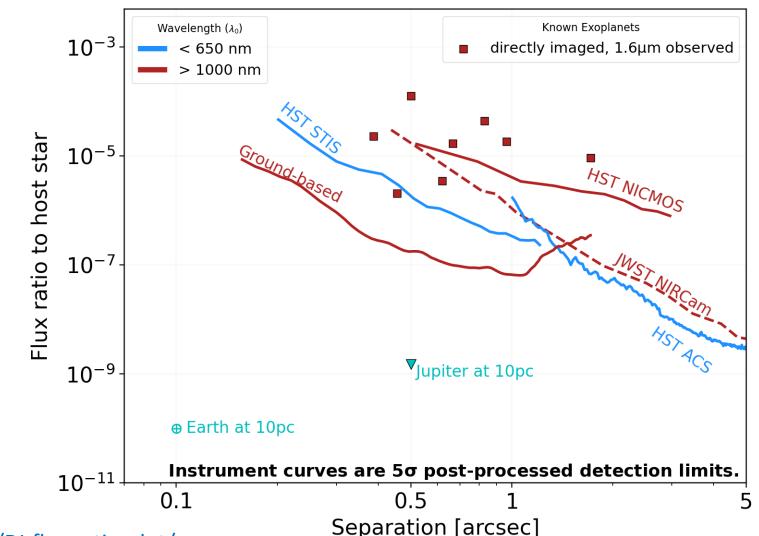
Coronagraph Instrument Overview

Vanessa Bailey

Jet Propulsion Laboratory, California Institute of Technology

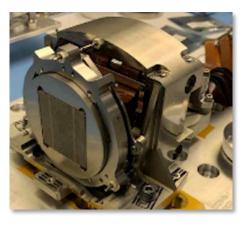
© 2021 California Institute of Technology. Government sponsorship acknowledged. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This document has been reviewed and determined not to contain export controlled technical data.


AAS Roman Town Hall Jan 15, 2021

What will we need to characterize a Solar System twin?

planetary system architecture like our own, around a Sun-like star

Goal: bridge gap between massive self-luminous planets (IR) and reflected light exo-Earths (visible)

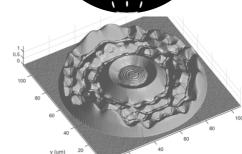


github.com/nasavbailey/DI-flux-ratio-plot/

CGI will demonstrate key technologies for future missions

Large-format Deformable Mirrors

Ultra-Precise

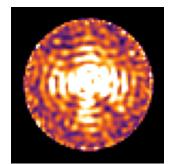

Wavefront Sensing & Control

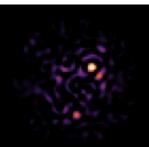
(now Ground-In-

The-Loop)

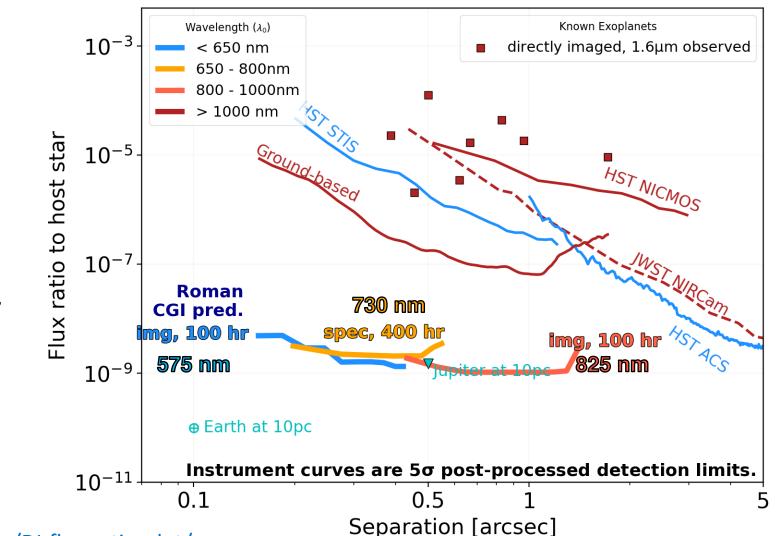
High-contrast Coronagraph Masks

All hardware now at $TRL \ge 6$


Ultra-low-noise Photon-counting EMCCDs



Proc. SPIE volume 11443


Data Post-Processing

Based on lab demonstrations as inputs to high-fidelity, end-to-end thermal, mechanical, optical models.

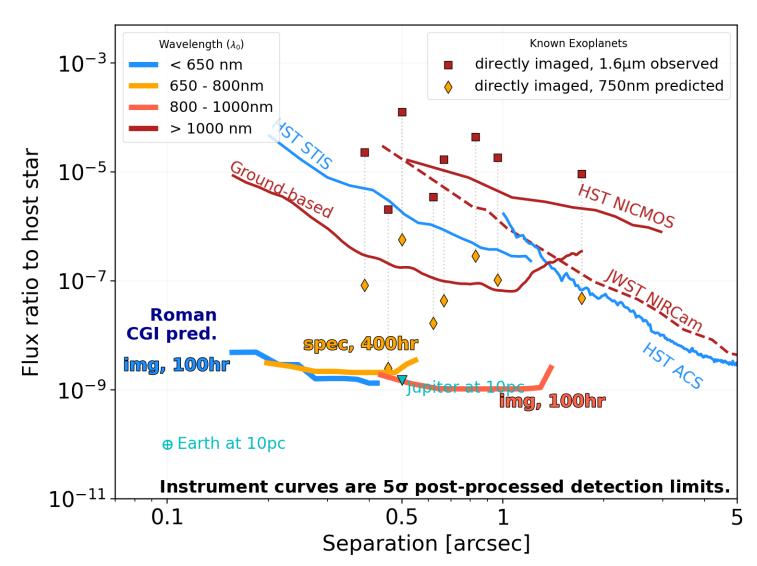
NASA terminology: MUF=1 predictions Brian Kern (JPL) John Krist (JPL) Bijan Nemati (UA Huntsville) A.J. Riggs (JPL) Hanying Zhou (JPL)

github.com/nasavbailey/DI-flux-ratio-plot/

CGI's predicted performance is 100-1000x better than State-of-the-Art

Known Exoplanets Wavelength (λ_0) 10^{-3} < 650 nm directly imaged, 1.6µm observed 650 - 800nm 800 - 1000nm > 1000 nm Flux ratio to host star Ground-based 10^{-5} HST NICMOS 10^{-7} Roman CGI pred. img, 100 hr spec. 400 hr img, 100 hr m hr 10^{-9} co hr ⊕ Earth at 10pc Instrument curves are 5σ post-processed detection limits. 10^{-11} 0.1 0.5 5 Separation [arcsec]

NANCY GRACE ROMAN SPACE TELESCOPE


Brian Kern (JPL) John Krist (JPL) Bijan Nemati (UA Huntsville) A.J. Riggs (JPL) Hanying Zhou (JPL)

Based on lab demonstrations as inputs to high-fidelity, end-to-end thermal, mechanical, optical models.

NASA terminology: MUF=1 predictions

6

CGI can study young, self-luminous planets at new wavelengths

Brianna Lacy (Princeton) Lacy & Burrows 2020

CGI can take the first reflected light images & spectra of true Jupiter analogs

Wavelength (λ_0) Known Exoplanets 10^{-3} < 650 nm directly imaged, 1.6µm observed 650 - 800nm directly imaged, 750nm predicted 800 - 1000nm RV, reflected light, predicted > 1000 nm Flux ratio to host star Ground-based 10^{-5} HST NICMOS 10^{-7} Roman CGI pred. spec, 400hr img, 100hr 10⁻⁹. img, 100hr \wedge ⊕ Earth at 10pc Instrument curves are 5σ post-processed detection limits. 10^{-11} 0.1 0.5 Separation [arcsec]

Natasha Batalha (Ames) Nikole Lewis (Cornell) Roxana Lupu (Ames) Mark Marley (Ames) Dmitry Savransky (Cornell)

5

NANCY GRACE

SPACE TELESCOPE

CGI can study the inner regions of disks

- Debris disks
 - RMSE~3% on polarized fraction
- Exozodi disks
- PP & Transition disks
 - Planets vs. disk clumps (Halpha & RDI)
 - Caveat: V>5 host stars

NANCY GRACE

John Debes (STScI) Ewan Douglas (U AZ) Bertrand Mennesson (JPL) Bin Ren (Caltech)

Summary

CGI paves the technological path toward exo-Earth missions

• Wavefront sensing and control, starlight suppression, photon-countin gEMCCDs

CGI will be capable of interesting science

- Imaging & spectroscopy of young planets
- First reflected light imaging and spectroscopy of mature Jupiter analogs
- Imaging and polarimetry of circumstellar disks, including exozodi

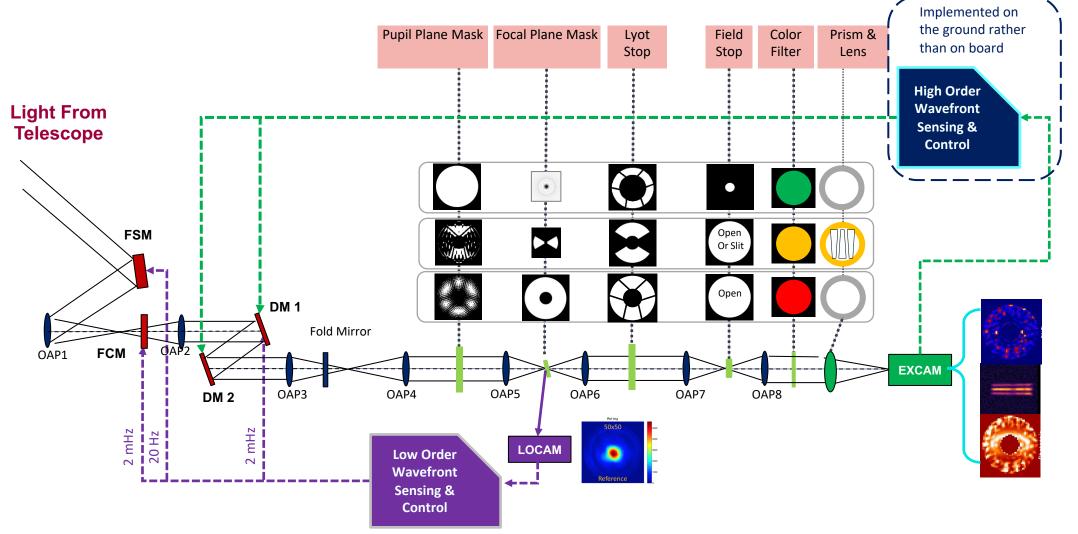
Get involved

- CGI data challenges exoplanetdatachallenge.com
- Instrument parameters and image simulations roman.ipac.caltech.edu
- RV planet simulated photometry & observability plandb.sioslab.com
- Performance predictions github.com/nasavbailey/DI-flux-ratio-plot/
- Community Participation Program call via ROSES later this year

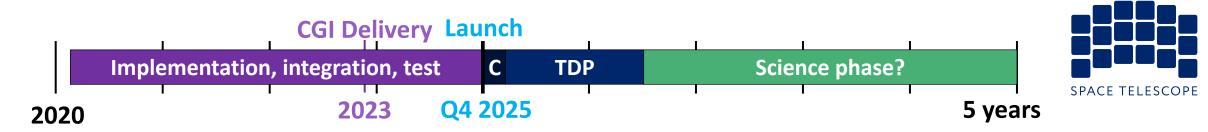
vanessa.bailey@jpl.nasa.gov

Backup

Primary Observing Modes


Exercised during the "technology demonstration phase" (~2200hr spread over 1st 21mo)

λ _{center}	BW	Mode	FOV radius	FOV Coverage	Polarimetry	Coronagraph Mask Type
575 nm	10%	Narrow FOV Imaging	0.14" – 0.45"	360°	Y	Hybrid Lyot
730 nm	15%	Slit + R~50 Prism Spectroscopy	0.18" – 0.55"	2 x 65°	-	Shaped Pupil
825 nm	10%	"Wide" FOV Imaging	0.45" - 1.4"	360°	Y	Shaped Pupil


Other filters and masks will be installed but will not be ground-tested and will not be guaranteed (including Halpha filter, 660nm spectroscopy, and other combinations of filters and FOVs).

Key technologies work together as a system to deliver high performance

OAP = Off-Axis Parabolic [Mirror]

- Feb 2020: Entered implementation phase (Phase C)
- Q3 2023: Instrument delivery to payload integration & test
- Q4 2025: Launch
- Commissioning Phase
 - 450 hr in first 90 days after launch
- Technology Demonstration Phase (TDP)
 - ~2200 hr (3 months) baselined in next 1.5 years of mission
- If TDP successful, potential science phase
 - 10-25% of remainder of 5 year mission
 - Commission unofficial observing modes (add'l mask+filter combo's)
 - Support community engagement
 - Not guaranteed: would require additional resources
 - Starshade rendezvous, if selected

NANCY GRACE

MAN