Coronagraph Instrument Overview

Vanessa Bailey

Jet Propulsion Laboratory, California Institute of Technology

AAS Roman Town Hall Jan 15, 2021 © 2021 California Institute of Technology. Government sponsorship acknowledged. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This document has been reviewed and determined not to contain export controlled technical data.

What do we need to find a Solar System twin?

planetary system architecture like our own, around a Sun-like star

Goal: bridge the gap between massive self-luminous planets (IR) and reflected light exo-Earths (visible)

CGI will demonstrate key technologies for future missions

Large-format Deformable Mirrors

High-contrast Coronagraph Masks

0.5 0 100 80 60 40 y (um) 20 40 20 x (um)

All hardware now at $TRL \ge 6$

Ultra-low-noise Photon-counting EMCCDs

Data Post-Processing

Ultra-Precise

Wavefront Sensing & Control

(now Ground-In-

The-Loop)

Based on lab demonstrations as inputs to high-fidelity, end-to-end thermal, mechanical, optical models.

NASA terminology: MUF=1 predictions

Brian Kern (JPL)
John Krist (JPL)
Bijan Nemati (UA Huntsville)
A.J. Riggs (JPL)
Hanying Zhou (JPL)

Primary Observing Modes

Exercised during the "technology demonstration phase" (~2200hr spread over 1st 21mo)

λ_{center}	BW	Mode	FOV radius	FOV coverage	Polarimetry
575 nm	10%	Narrow FOV Imaging	0.14" - 0.45"	360°	Υ
730 nm	15%	Slit + R~50 Prism Spectroscopy	0.18" - 0.55"	2 x 65°	_
825 nm	10%	"Wide" FOV Imaging	0.45" - 1.4"	360°	Υ

Other filters and masks are installed but are not guaranteed.

CGI can study young, self-luminous planets at new wavelengths

CGI can take the first reflected light images & spectra of true Jupiter analogs

Debris disks

- Structure, color, polarized fraction
- RMSE~3% on polarized fraction

Exozodi disks

 Can potentially shroud planets from observations

PP & Transition disks

- Planets vs. disk clumps (Halpha & RDI)
- Caveat: CGI only required to observe V<5 host stars; performance on fainter stars is currently unknown

Summary

- CGI paves the technological path toward exo-Earth missions
 - Wavefront sensing and control, starlight suppression, photon-countin gEMCCDs
- CGI will be capable of interesting science
 - Imaging & spectroscopy of young planets
 - First reflected light imaging and spectroscopy of mature Jupiter analogs
 - Imaging and polarimetry of circumstellar disks, including exozodi

Get involved

- CGI data challenges exoplanetdatachallenge.com
- Instrument parameters and image simulations roman.ipac.caltech.edu
- RV planet simulated photometry & observability plandb.sioslab.com
- Performance predictions github.com/nasavbailey/DI-flux-ratio-plot/
- Community Participation Program call via ROSES later this year

Thank you

CGI Community Participation Program

- Feb 2020: Entered implementation phase (Phase C)
- Q3 2023: Instrument delivery to payload integration & test
- Q4 2025: Launch
- Commissioning Phase
 - 450 hr in first 90 days after launch
- Technology Demonstration Phase (TDP)
 - ~2200 hr (3 months) baselined in next 1.5 years of mission
- If TDP successful, potential science phase
 - 10-25% of remainder of 5 year mission
 - Commission unofficial observing modes (add'l mask+filter combo's)
 - Support community engagement
 - Not guaranteed: would require additional resources
 - Starshade rendezvous, if selected

CGI Observing Modes

λ _{center} (nm)	BW	Mode	FOV radius	Polarimetry?
575	10%	Imager	0.14" - 0.45"	Υ
730	15%	Slit + R~50 Prism	0.18" - 0.55"	-
825	10%	lmager	0.45" - 1.4"	Υ
630	15%	Slit + R~50 Prism	0.17" - 0.5"	Υ
Ηα	1%	Imager	0.17" - 0.5"	Υ
575	10%	Imager	0.35" - 1"	Υ
825	10%	Imager	0.2" - 0.65"	Υ

Three "official" modes will be fully tested prior to launch.

Additional modes installed but not fully tested before launch

Additional narrow sub-bands (2.5-3.5%) installed

Q: status

Key technologies work together as a system to deliver high performance

