Coronagraph Instrument Overview

Vanessa Bailey

Jet Propulsion Laboratory, California Institute of Technology

© 2021 California Institute of Technology. Government sponsorship acknowledged. The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This document has been reviewed and determined not to contain export controlled technical data.

AAS Roman Town Hall Jan 15, 2021

What do we need to characterize a Solar System twin?

planetary system architecture like our own, around a Sun-like star

Goal: bridge gap between massive self-luminous planets (IR) and reflected light exo-Earths (visible)

github.com/nasavbailey/DI-flux-ratio-plot/

CGI will demonstrate key technologies for future missions

Large-format Deformable Mirrors

High-contrast Coronagraph Masks

All hardware now at $TRL \ge 6$

Ultra-low-noise Photon-counting EMCCDs

Data Post-Processing

Ultra-Precise Wavefront Sensing & Control (now Ground-In-The-Loop)

CGI's predicted performance is 100-1000x better than State-of-the-Art

NANCY GRACE $\mathbf{R}(\mathbf{MAN})$ SPACE TELESCOPE

Brian Kern (JPL) Bijan Nemati (UA Huntsville)

John Krist (JPL) A.J. Riggs (JPL) Hanying Zhou (JPL)

github.com/nasavbailey/DI-flux-ratio-plot/

Based on lab

models.

demonstrations as

end-to-end thermal,

mechanical, optical

NASA terminology: MUF=1 predictions

CGI's predicted performance is 100-1000x better than State-of-the-Art

Known Exoplanets Wavelength (λ_0) 10^{-3} < 650 nm directly imaged, 1.6µm observed 650 - 800nm 800 - 1000nm > 1000 nm Flux ratio to host star Ground-based 10^{-5} HST NICMOS 10^{-7} Roman inputs to high-fidelity, CGI pred. img, 100 hr spec. 400 hr img, 100 hr 10^{-9} ∞ hr ⊕ Earth at 10pc Instrument curves are 5σ post-processed detection limits. 10^{-11} 0.1 0.5 5 Separation [arcsec]

NANCY GRACE $\mathbf{R}(\mathbf{MAN})$ SPACE TELESCOPE

Brian Kern (JPL) John Krist (JPL) Bijan Nemati (UA Huntsville) A.J. Riggs (JPL) Hanying Zhou (JPL)

github.com/nasavbailey/DI-flux-ratio-plot/

Based on lab

models.

demonstrations as

end-to-end thermal,

mechanical, optical

NASA terminology: MUF=1 predictions

CGI can study young, self-luminous planets at new wavelengths

CGI can take the first reflected light images & spectra of true Jupiter analogs

CGI can study the inner regions of disks

- Debris disks
 - RMSE~3% on polarized fraction
- Exozodi disks
- PP & Transition disks
 - Planets vs. disk clumps (Halpha & RDI)
 - Caveat: V>5 host stars

Summary

CGI paves the technological path toward exo-Earth missions

• Wavefront sensing and control, starlight suppression, photon-countin gEMCCDs

CGI will be capable of interesting science

- Imaging & spectroscopy of young planets
- First reflected light imaging and spectroscopy of mature Jupiter analogs
- Imaging and polarimetry of circumstellar disks, including exozodi

Get involved

- CGI data challenges exoplanetdatachallenge.com
- Instrument parameters and image simulations roman.ipac.caltech.edu
- RV planet simulated photometry & observability plandb.sioslab.com
- Performance predictions github.com/nasavbailey/DI-flux-ratio-plot/
- Community Participation Program call via ROSES later this year

vanessa.bailey@jpl.nasa.gov

Thank you

Primary Observing Modes

Exercised during the "technology demonstration phase" (~2200hr spread over 1st 21mo)

λ_{center}	BW	Mode	FOV radius	FOV coverage	Polarimetry
575 nm	10%	Narrow FOV Imaging	0.14" – 0.45"	360°	Y
730 nm	15%	Slit + R~50 Prism Spectroscopy	0.18" – 0.55"	2 x 65°	-
825 nm	10%	"Wide" FOV Imaging	0.45" – 1.4"	360°	Y

Other filters and masks are installed but are not guaranteed.

- Feb 2020: Entered implementation phase (Phase C)
- Q3 2023: Instrument delivery to payload integration & test
- Q4 2025: Launch
- Commissioning Phase
 - 450 hr in first 90 days after launch
- Technology Demonstration Phase (TDP)
 - ~2200 hr (3 months) baselined in next 1.5 years of mission
 - If TDP successful, potential science phase
 - 10-25% of remainder of 5 year mission
 - Commission unofficial observing modes (add'l mask+filter combo's)
 - Support community engagement
 - Not guaranteed: would require additional resources
 - Starshade rendezvous, if selected

CGI Observing Modes

λ _{center} (nm)	BW	Mode	FOV radius	Polarimetry?
575	10%	Imager	0.14" – 0.45"	Y
730	15%	Slit + R~50 Prism	0.18" – 0.55"	-
825	10%	Imager	0.45" – 1.4"	Y
630	15%	Slit + R~50 Prism	0.17" – 0.5"	Y
Ηα	1%	Imager	0.17" – 0.5"	Y
575	10%	Imager	0.35" - 1"	Y
825	10%	Imager	0.2" - 0.65"	Y

Three "official" modes will be fully tested prior to launch.

Additional modes installed but not fully tested before launch

Additional narrow *sub-bands* (2.5-3.5%) installed

Key technologies work together as a system to deliver high performance

SPACE TELESCOPE

OAP = Off-Axis Parabolic [Mirror]