Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Expand
titleNancy Grace Roman Space Telescope


Expand
titleRoman Space Telescope


ThumbnailWorking NameDescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location


Learn more about the Roman Space Telescope spacecraft with this short tour of the main systems.

Credit: NASA's Goddard Space Flight Center


Music: “Phenomenon" from Above and Below Written and produced by Lars Leonhard

Video807.1 MBMP413295_Roman_360_Best_1080https://stsci.box.com/s/9m81dvpe9zpfjc41zeml5hnq0o0kdh14https://svs.gsfc.nasa.gov/13295


Still frame of spacecraft animationCredit: NASA's Goddard Space Flight CenterImage48.4 KBJPGTurntableRev01A_ProRes_Alpha.00001_printhttps://stsci.box.com/s/e5mcy7dm5i4cp48feffpktv9fscmto0shttps://roman.gsfc.nasa.gov/gallery-spacecraftillustrations.html


Still frame of spacecraft animationCredit: NASA's Goddard Space Flight CenterImage191.4 KBJPGRoman_Space_Telescope_Still_1https://stsci.box.com/s/iddn4cojy0peaq68urgiv2m5xvautwiwhttps://svs.gsfc.nasa.gov/13621


Still frame of spacecraft animationCredit: NASA's Goddard Space Flight CenterImage172.2 KBJPGRoman_Space_Telescope_Still_2https://stsci.box.com/s/axgzqky3u55uwjv3iwaags1gvewdz332https://svs.gsfc.nasa.gov/13621


Still frame of spacecraft animationCredit: NASA's Goddard Space Flight CenterImage178.3 KBJPGRoman_Space_Telescope_Still_3https://stsci.box.com/s/3hr4ctcz7b61j6b14g4lh43ejcfx7wvkhttps://svs.gsfc.nasa.gov/13621


Still frame of spacecraft animationCredit: NASA's Goddard Space Flight CenterImage507.8 KBJPGRST_2020_Stillhttps://stsci.box.com/s/l6dcfm49nydoschci88jnvmn8o5d75q8https://svs.gsfc.nasa.gov/13621


Still frame of spacecraft animationCredit: NASA's Goddard Space Flight CenterImage755.2 KBJPGRoman_Space_Telescope_Animation1_Still2https://stsci.box.com/s/qy3f9jyhy3aqxpn1su9qx9vjon0pid1ghttps://svs.gsfc.nasa.gov/13621


Stylized still frame of spacecraft animationCredit: NASA's Goddard Space Flight CenterImage2 MBJPGTrailer_still_1https://stsci.box.com/s/g526b9ntswvm4iovkiqjuksswa8jtodqhttps://svs.gsfc.nasa.gov/13621


Stylized still frame of spacecraft animationCredit: NASA's Goddard Space Flight CenterImage1.5 MBJPGRoman_Still_2https://stsci.box.com/s/h7k7y22w2rpqr0w3q46fdqrp5atysh1fhttps://svs.gsfc.nasa.gov/13621


Stylized still frame of spacecraft animation and nameCredit: NASA's Goddard Space Flight CenterImage1.8 MBJPGRoman_Title_1https://stsci.box.com/s/de2mwgl5vg55u3zidr73ztyr498fobumhttps://svs.gsfc.nasa.gov/13621


Still frame of spacecraft animationCredit: NASA's Goddard Space Flight CenterImage38.3 KBJPGTurntableWithBarrelRollA_4k.00738_printhttps://stsci.box.com/s/ckg6p2ta4vpw1nlsuk2xlpllt5n55w21https://svs.gsfc.nasa.gov/13621


"Beauty pass" animation of the Roman Space Telescope spacecraftCredit: NASA's Goddard Space Flight CenterVideo45.4 MBMP4Roman_Space_Telescope_Beauty1_1080https://stsci.box.com/s/5sg8hzhiya6mm8r799fpul6w36wuuh7xhttps://svs.gsfc.nasa.gov/13621


"Beauty pass" animation of the Roman Space Telescope spacecraftCredit: NASA's Goddard Space Flight CenterVideo45.5 MBMP4Roman_Space_Telescope_Beauty2_1080https://stsci.box.com/s/frk2ko9hk4ydq2k8uxkohxvvhk6sy8uzhttps://svs.gsfc.nasa.gov/13621


Welcome to NASA's upcoming infrared survey mission, taking a wider view of the cosmos.Credit: NASA's Goddard Space Flight CenterVideo281.5 MBMP4Roman_Space_Telescope_Trailer_Best_1080https://stsci.box.com/s/ai1fe4kjh29ao3gcqbi93xrku2u9b5uihttps://svs.gsfc.nasa.gov/13606


The Roman Space Telescope’s primary mirror reflects an American flag. Its surface is figured to a level hundreds of times finer than a typical household mirror.Credits: L3Harris TechnologiesImage9 MBJPGpm10https://stsci.box.com/s/xzo05oilxq7upj38wg1gdvitxa111y95https://www.nasa.gov/feature/goddard/2020/primary-mirror-for-nasas-roman-space-telescope-completed


The Nancy Grace Roman Space Telescope’s primary mirror, which will collect and focus light from cosmic objects near and far, has been completed. Using this mirror, Roman will capture stunning space vistas with a field of view 100 times greater than Hubble images.Credits: L3Harris TechnologiesImage1.7 MBJPGpm2_1https://stsci.box.com/s/bou373c30lnu38zn7bcrshm8rie56656https://www.nasa.gov/feature/goddard/2020/primary-mirror-for-nasas-roman-space-telescope-completed


Crane operators lower the support equipment to move the Roman Space Telescope’s primary mirror. Using this mirror, Roman will provide a new view into the universe, helping scientists solve cosmic mysteries related to dark matter, dark energy, and planets around other stars.Credits: L3Harris TechnologiesImage43.7 KBJPGpm3https://stsci.box.com/s/ozwncqvt4ml3idufa4rt00rjvwkikkamhttps://www.nasa.gov/feature/goddard/2020/primary-mirror-for-nasas-roman-space-telescope-completed


Members of the Roman Space Telescope team pose with the telescope’s primary mirror at L3 Harris Technologies in Rochester, New York. The telescope just passed a key milestone review, permitting the team to move on to finalizing the telescope design.Credit: NASA's Goddard Space Flight CenterImage4 MBPNGWFIRSTNASAPhotohttps://stsci.box.com/s/2aj4xjo30g67or6pznpf9vrccmuevcmkhttps://svs.gsfc.nasa.gov/13295












Expand
titleWide Field Instrument (WFI)


ThumbnailWorking NameDescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location

Image Removed

Comparison of Hubble, Webb, and Roman, including their unique strengths and synergies.Credit:  A. James (STScI)Image32.4 MBPNGRoman-Hubble-Webb_comparisonhttps://stsci.box.com/s/s2f0es38bw4kex10lhks2x58pubfo0k3https://hubblesite.org/hubble-30th-anniversary/resources


The Nancy Grace Roman Space Telescope is a next-generation space telescope that will survey the infrared universe from beyond the orbit of the Moon. The spacecraft's giant camera, the Wide Field Instrument (WFI), will be fundamental to this exploration. The WFI features the same angular resolution as Hubble but with 100 times the field of view. Data it gathers will enable scientists to discover new and uniquely detailed information about planetary systems around other stars. The WFI will also map how matter is structured and distributed throughout the cosmos, which should ultimately allow scientists to discover the fate of the universe. Watch this video to see a simplified version of how it works.

Credit: NASA's Goddard Space Flight Center.


Music" "Horizon Ahead" from Killer Tracks

Video269.5 MBMP413235_WFI_Roman_Best_1080https://stsci.box.com/s/eb54z0uwxchl1re2zwz2nj5ogy44jcprhttps://svs.gsfc.nasa.gov/13235


4k animation of the telescope and Wide Field Instrument, showing a simplified exploded view of how it works.Credit: NASA's Goddard Space Flight Center/CI LabVideo384.5 MBMP4GSFC_20190626_WFIRST_m13235_widefield_Animationhttps://stsci.box.com/s/tltx2mth63vklcet8jxj3k9fbk7n9ifuhttps://svs.gsfc.nasa.gov/13235


Animated GIF of the Roman Wide Field Instrument.Credit: NASA's Goddard Space Flight CenterAnimation1.8 MBGIFWFIRST_WideFieldInstrumenthttps://stsci.box.com/s/itwbh12qrd21uc9ejmc6hugpv3txe8tqhttps://svs.gsfc.nasa.gov/13235












Expand
titleCoronagraph Instrument (CGI)


ThumbnailWorking NameDescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location


Watch this video to learn more about the Roman Space Telescope's coronagraph instrument.

Credit: NASA's Goddard Space Flight Center


Music: "Concept of Motion" from Universe Production Music

Video96.8 MBMP413325_Roman_CGI_1080https://stsci.box.com/s/yh5oh6lxu1um85pvqsz0j32iokyxfiv0https://svs.gsfc.nasa.gov/13325






















...

Expand
titleBig Data


ThumbnailWorking NameDescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location


This infographic showcases the difference in data volume between the Nancy Grace Roman, Webb and Hubble space telescopes. Each day, Roman will send over 500 times more data back to Earth than Hubble.Credit: NASA's Goddard Space Flight CenterImage38.9 MBPNGRoman_Data_Scale_Finalhttps://stsci.box.com/s/iqmluwt2j2dyeexzpv8vyfdo4kkristphttps://svs.gsfc.nasa.gov/13667


This infographic showcases the difference in data volume between the Nancy Grace Roman and Hubble space telescopes. Each day, Roman will send over 500 times more data back to Earth than Hubble.Credit: NASA's Goddard Space Flight CenterImage39.3 MBPNGRoman_Data_Scale_HubbleOnly_Finalhttps://stsci.box.com/s/okmw15dblwmq4ajnmkfnivxdwb4e4p6shttps://svs.gsfc.nasa.gov/13667


This simulated image illustrates the wide range of science enabled by Roman's extremely wide field of view and exquisite resolution. The purple squares, which all contain background imagery simulated using data from Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) program, outline the area Roman can capture in a single observation. An orange square shows the field of view of Hubble’s Wide Field Camera 3 for comparison. While the CANDELS program took Hubble nearly 21 days to survey in near-infrared light, Roman’s large field of view and higher efficiency would allow it to survey the same area in less than half an hour. Top left: This view illustrates a region of the large nearby spiral galaxy M83. Top right: A hypothetical distant dwarf galaxy appears in this magnified view, demonstrating Roman’s ability to detect small, faint galaxies at large distances. Bottom left: This magnified view illustrates how Roman will be able to resolve bright stars even in the dense cores of globular star clusters. Bottom right: A zoom of the CANDELS-based background shows the density of high-redshift galaxies Roman will detect.


New version will be available soon.

Credit: Benjamin Williams, David Weinberg, Anil Seth, Eric Bell, Dave Sand, Dominic Benford, and the WINGS Science Investigation TeamImage
PNGGreatfield_Simulated_Roman_Landscape_Texthttps://stsci.box.com/s/9fgfz4uyjmpa1io3yzow2w9kn2icigxghttps://svs.gsfc.nasa.gov/13667


This simulated image illustrates the wide range of science enabled by Roman's extremely wide field of view and exquisite resolution. The purple squares, which all contain background imagery simulated using data from Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) program, outline the area Roman can capture in a single observation. An orange square shows the field of view of Hubble’s Wide Field Camera 3 for comparison. While the CANDELS program took Hubble nearly 21 days to survey in near-infrared light, Roman’s large field of view and higher efficiency would allow it to survey the same area in less than half an hour. Top left: This view illustrates a region of the large nearby spiral galaxy M83. Top right: A hypothetical distant dwarf galaxy appears in this magnified view, demonstrating Roman’s ability to detect small, faint galaxies at large distances. Bottom left: This magnified view illustrates how Roman will be able to resolve bright stars even in the dense cores of globular star clusters. Bottom right: A zoom of the CANDELS-based background shows the density of high-redshift galaxies Roman will detect.

Credit: Benjamin Williams, David Weinberg, Anil Seth, Eric Bell, Dave Sand, Dominic Benford, and the WINGS Science Investigation TeamImage
PNGGreatfield_Simulated_Roman_Portrait_Texthttps://stsci.box.com/s/4wrzhvltn01mcpu2w238tddsvsx8fsmchttps://svs.gsfc.nasa.gov/13667


This simulated image illustrates the wide range of science enabled by Roman's extremely wide field of view and exquisite resolution. The purple squares, which all contain background imagery simulated using data from Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) program, outline the area Roman can capture in a single observation. An orange square shows the field of view of Hubble’s Wide Field Camera 3 for comparison. While the CANDELS program took Hubble nearly 21 days to survey in near-infrared light, Roman’s large field of view and higher efficiency would allow it to survey the same area in less than half an hour. Top left: This view illustrates a region of the large nearby spiral galaxy M83. Top right: A hypothetical distant dwarf galaxy appears in this magnified view, demonstrating Roman’s ability to detect small, faint galaxies at large distances. Bottom left: This magnified view illustrates how Roman will be able to resolve bright stars even in the dense cores of globular star clusters. Bottom right: A zoom of the CANDELS-based background shows the density of high-redshift galaxies Roman will detect.Credit: Benjamin Williams, David Weinberg, Anil Seth, Eric Bell, Dave Sand, Dominic Benford, and the WINGS Science Investigation TeamImage
PNGGreatfield_Simulated_Roman_Landscape_NoTexthttps://stsci.box.com/s/lnp2rumbiadldy6a6wrcj392qvbmhzvwhttps://svs.gsfc.nasa.gov/13667


This simulated image illustrates the wide range of science enabled by Roman's extremely wide field of view and exquisite resolution. The purple squares, which all contain background imagery simulated using data from Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) program, outline the area Roman can capture in a single observation. An orange square shows the field of view of Hubble’s Wide Field Camera 3 for comparison. While the CANDELS program took Hubble nearly 21 days to survey in near-infrared light, Roman’s large field of view and higher efficiency would allow it to survey the same area in less than half an hour. Top left: This view illustrates a region of the large nearby spiral galaxy M83. Top right: A hypothetical distant dwarf galaxy appears in this magnified view, demonstrating Roman’s ability to detect small, faint galaxies at large distances. Bottom left: This magnified view illustrates how Roman will be able to resolve bright stars even in the dense cores of globular star clusters. Bottom right: A zoom of the CANDELS-based background shows the density of high-redshift galaxies Roman will detect.Credit: Benjamin Williams, David Weinberg, Anil Seth, Eric Bell, Dave Sand, Dominic Benford, and the WINGS Science Investigation TeamImage
PNGGreatfield_Simulated_Roman_Portrait_NoTexthttps://stsci.box.com/s/61cwd1r28a686qh1uze2v15ws3azc5rqhttps://svs.gsfc.nasa.gov/13667











Expand
titleComparisons with other Observatories


ThumbnailWorking NameDescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location


Image Added

Comparison of Hubble, Webb, and Roman, including their unique strengths and synergies.Credit:  A. James (STScI)Image32.4 MBPNGRoman-Hubble-Webb_comparisonhttps://stsci.box.com/s/s2f0es38bw4kex10lhks2x58pubfo0k3https://hubblesite.org/hubble-30th-anniversary/resources

Image Added


Comparison of observatories and their abilities to observe the EM spectrum.


Updated version in progress by STScI with observatories of the 2020s.