2018-01-25 TrEx WG Meeting notes ### Date 25 Jan 2018 #### Attendees - Kevin Stevenson - Unknown User (birkmann) - John Stansberry - Bryan Hilbert - Nikole Lewis - Sarah Kendrew - Jonathan Fraine - Online attendees ## Acronyms - TA = target acquisition TSO = time-series observations - FoV = field of view - ETC = JWST exposure time calculator WATA = wide-angle target acquisition #### Discussion items | Time | Item | Who | Notes | |------|---------------------------------|-------|--| | | General Update | Kevin | See slides titled "TrExWG-2018-01.pdf" TA was recently brought up as a concern for TSOs of bright targets and how STScI would handle proposals/targets for which TA was not feasible WG performed study of TA limits for all four instruments NIRISS: no concerns, can always perform TA on science target NIRCam: can achieve 0.1 pixel pointing accuracy with 4 partially and 1 fully saturated pixels (K = 6.1), brighter objects may need to use offset TA or saturate additional pixels with a decrease in pointing accuracy (~1 pixel) NIRSpec: most objects will need to use offset TA, but brightness range is 11 < K < 25 therefore finding a suitable offset target should not be an issue MIRI LRS: no concerns with LRS mode, can always perform TA on science target MIRI Photometry: no TA for MIRI photometry, blind pointing accuracy (4 pixels at 1 sigma) is well within FoV for smallest subarray (SUB64) Conclusion from TA study is that all science targets should have a viable means to perform TA Potential improvements for Cycle 2 Narrow filter for NIRCam, fewer groups for NIRSpec, improved TA on saturated targets (software), micro-shutter assembly TA for NIRSpec Other highlights include MIRI TSO photometry enabled for Cycle 1, includes full array and all subarray modes Developed strategy to provide timestamps for each integration since time is recorded once every science (full frame) image, will create FITS extension with BJD_TDB times Finalized "chunking" strategy for large datasets, exposures will be evenly divided into segments of <= 2 GB each; will enable faster processing of data and easier sharing on MAST Everyone should update their local version of PandExo | | | NIRCam TA with saturated pixels | Bryan | See slides titled "TA_with_saturated_pix.pdf" Tested TA accuracy for various levels of saturation with NICam Range: K = 3.3 - 7.3 in 0.5 mag intervals Pixel scale = 0.065/pix Fully saturated: saturates in Group 1 Partially saturated: saturates in Group 2 or 3 Can achieve <1 pixel pointing accuracy with up to 8 fully saturated pixels (K~3.5) The "desirement" is for 0.1 pixel TA accuracy, which is possible without saturating any pixels, but we cannot specify a requirement until we're on sky and can evaluate the impact of systematics Proposers should evaluate how their science goals might be impacted by reduced (~1 pixel) TA accuracy for very bright targets before determining their preferred TA strategy (offset vs saturation) | | | ETC vs PandExo | Jonath
an | See slides titled "Comparisons_between_Pandeia_and_PandExo.pdf" ETC and PandExo produce consistent results (SNR) when the # of integrations is 1 ETC produces a significantly lower SNR (compared to PandExo) when the # of integrations is large The is because the ETC includes the flat field uncertainty for every integration, which is correct for non-TSO data, whereas TSOs are a relative measurement that don't depend on a precise flat fielding, so long as the pointing jitter is small ETC and PandExo do agree when we use the ETC SNR for 1 integration and then bin down assuming "root N" statistics CONCLUSION: We should encourage people to use PandExo for their TSO planning | |--|----------------|--------------|--| | | APT | Sarah | See slides titled "jan18_updates.pdf" APT has gone through a series of updates over the past few months NIRCam: max NGROUPS for TA = 65 NIRSpec: optional TA, added WATA MIRI: optional TA for LRS NIRISS: only NISRAPID permitted in SOSS template ALL: TSO special requirement added, NINTS <= 65535, warning (not error) for exposures > 10,000s Ran out of time to discuss JDox | ## Slides ## Action items Unknown User (birkmann): PR to enable MSATA for TSOs