
1.
2.
3.
4.

API Curl Download
When downloading large files, or a large number of them, it is often advisable to use a bash script to download via the API. These scripts use the cURL
utility to retrieve the selected files. cURL is robust, reliable, and supports many features including authentication. It is also the preferred tool for
downloading large volumes of data because of the data volume and rate limits imposed by the Portal Web interface.

On this page...

Example Bash Script
The API Token
Retrieve Files

Interactive Python Example
For Further Reading...

Example Bash Script
When retrieving a selection of files from the MAST Portal, one of the download options is an auto-generated (shell) script. Note that this option bash
will download only the script; the actual files are download when the script is run.

You must invoke the script in a unix terminal to download the files:

bash MAST_2022-04-30T2140.sh

A look at the example script shows that, apart from some housekeeping, it does a few main things:MAST_2022-04-30T2153.sh

For , fetch the EAP protected data MAST API Token
Create a folder for the payload
Create a file to report status of the requested vs. retrieved data filesMANIFEST.HTML
Retrieve each data file with a cURL command

Items 1 and 4 are described below in more detail.

The API Token

If the requested files include at least one with EAP protection, a MAST API token is required. As the following code snippet shows, the bash script will
attempt to get the MAST token multiple ways.

Supplying the MAST Token

Check for command-line argument
if [-z "$1"]
then
 # Check for environment variable
 if [-z "$MAST_API_TOKEN"]
 then
 # Prompt the user
 echo "Please enter your token here: "
 read MAST_API_TOKEN
 fi
else
 MAST_API_TOKEN=$1
fi

Retrieve Files

The following code snippet shows how each file is retrieved with cURL. For readability, the cURL command is re-formatted here as multi-line, with linux
/MacOS escape characters.

If you would like to customize the example script provided here to access data files in MAST, you will first need to determine the URIs for
the files of interest using another API, e.g., astroquery.mast. See the 'Interactive Example' section down below to try it yourself.

https://curl.se/docs/manpage.html
https://curl.se/docs/manpage.html
https://outerspace.stsci.edu/download/attachments/113771439/MAST_2022-04-30T2153.sh?version=1&modificationDate=1657650330960&api=v2
https://outerspace.stsci.edu/display/MASTDOCS/Quick+Start+Guide
https://auth.mast.stsci.edu/info

cURL File Retrieval

Announce the file
cat <<EOT
<<< Downloading
 File: mast:JWST/product/jw01409-o031_t014_nircam_clear-f212n_i2d.fits
 To: ${DOWNLOAD_FOLDER}/JWST/jw01409-o031_t014_nircam_clear-f212n/jw01409-o031_t014_nircam_clear-
f212n_i2d.fits
EOT
Retrieve the file
curl -H "Authorization: token $MAST_API_TOKEN" \
 --globoff \
 --location-trusted \
 -f \
 --progress-bar \
 --create-dirs $CONT \
 --output ./${DOWNLOAD_FOLDER}'/JWST/jw01409-o031_t014_nircam_clear-f212n/jw00839-
o003_t001_miri_f560w_i2d.fits' \
'https://mast.stsci.edu/jwst/api/v0.1/Download/file?bundle_name=MAST_2022-04-30T2153&uri=mast:JWST/product
/jw01409-o031_t014_nircam_clear-f212n_i2d.fits'

Announce the second file
cat <<EOT
<<< Downloading
 File: mast:JWST/product/jw01409-o031_t014_nircam_clear-f212n_cat.ecsv
 To: ${DOWNLOAD_FOLDER}/JWST/jw01409-o031_t014_nircam_clear-f212n/jw01409-o031_t014_nircam_clear-
f212n_cat.ecsv
EOT
Retrieve the second file
curl -H "Authorization: token $MAST_API_TOKEN" \
 --globoff \
 --location-trusted \
 -f \
 --progress-bar \
 --create-dirs $CONT \
 --output ./${DOWNLOAD_FOLDER}'/JWST/jw01409-o031_t014_nircam_clear-f212n/jw01409-o031_t014_nircam_clear-
f212n_cat.ecsv' \
'https://mast.stsci.edu/jwst/api/v0.1/Download/file?bundle_name=MAST_2022-04-30T2153&uri=mast:JWST/product
/jw01409-o031_t014_nircam_clear-f212n_cat.ecsv'

It is worth calling out two important cURL command-line options:

-H: pass custom header to the server. In this case, the MAST auth token
--location-trusted: Follow re-directs, and send auth to other hosts

Interactive Python Example
In addition to requesting a cURL script from the MAST Portal, you can get one from the astroquery.mast Python API. We offer an interactive large

 that might serve as an example of how to construct such a query. Jupyter Notebooks are interactive, make it easy to download Jupyter Notebook
follow along with code, and can be customized with ease; we highly suggest trying this tutorial in our Notebook.

For completeness, we also reproduce that code on this webpage. To begin, you must import the necessary packages. You'll need astroquery.mast to
access the API, and astropy.table to handle the results, which are returned as a Table object. Then you can create a query, searching on any of the fiel

. Here we'll query for JWST NIRCam observations, and specify a specific proposal ID.ds listed on our API page

Imports and Initial Query

from astroquery.mast import Observations
from astropy.table import unique, vstack, Table

matched_obs = Observations.query_criteria(
 obs_collection = 'JWST',
 proposal_id = '1073',
 instrument_name = 'NIRCam',
)

https://spacetelescope.github.io/mast_notebooks/notebooks/astroquery/large_downloads/large_downloads.html
https://spacetelescope.github.io/mast_notebooks/notebooks/astroquery/large_downloads/large_downloads.html
https://mast.stsci.edu/api/v0/_c_a_o_mfields.html
https://mast.stsci.edu/api/v0/_c_a_o_mfields.html

The above code will return only matched . Each observation has a set of files associated with it; these may be guide-star images, observations
uncalibrated exposures, or the final calibrated science product. In any case, we will need to retrieve all of these products before we can filter the
results.

Requesting the products for many observations at once increases the risk of timeout errors. However, requesting products one at a time is often slow.
The best balance is achieved by requesting products in groups of five.

Optimizing Product Requests

Split the observations into "chunks" of size five
sz_chunk = 5
chunks = [matched_obs[i:i+sz_chunk] for i in range(0,len(matched_obs), sz_chunk)]

Get the list of products for each chunk
t = [Observations.get_product_list(chunk) for chunk in chunks]

Combine, and keep only the unique files
files = unique(vstack(t), keys='productFilename')

With our set of unique files, all that remains is to pass the table to the download products function. We also include the 'extension' filter to limit our
download to .fits files. Any criteria listed on the may also be used.products fields page

Downloading Files

manifest = Observations.download_products(
 files,
 extension='fits',
 curl_flag=True,
)

For Further Reading...
MAST Web Services

https://mast.stsci.edu/api/v0/_productsfields.html
https://archive.stsci.edu/vo/mast_services.html

	API Curl Download

