
Regular Expressions
The Download Overlay component includes the ability to select products with regular expressions. This article gives extensive examples of how to
use regex effectively.

On this page...

The What and Why of Regular Expressions
Common Regex Syntax
An Important Distinction: * is not a wildcard
Example Searches
For Further Reading...

The What and Why of Regular Expressions
A regular expression (often called a regex) is a powerful way to search text for matches. At the most basic level, it functions similarly to the "control
/command + f" search function in most text editors and web browsers; any exact match with the "simple string" you enter will be returned. The
advantage of regex is its specialized syntax, which allows for complex queries beyond simple 1:1 matching. This page will list the syntaxes available to
you in the search form and walk through some examples of regex queries.

Common Regex Syntax
Not all regex syntax is valid for a filename search. The most useful syntaxes are included in the table below.

Syntax Meaning

. Matches any character

* The preceding character appears zero or more times

+ The preceding character appears one or more times

$ Matches the end of a filename

[aeiou] Matches any character in the listed set

[^XYZ] Matches any character in the listed setnot

[a-z0-9] The set of characters can include a range or multiple ranges

If you want to use one of the special characters literally, you must 'escape' it. For example, if you actually wanted to include a period in your search
query, you should enter "\."

An Important Distinction: * is not a wildcard
One of the most common mistakes in regex is using * as a generic wildcard character. As is shown in the example table below, the * character is
always interpreted in conjunction with the preceding character.

The correct syntax for a wildcard is either ".*" or ".+", depending on whether the absence of a character should be included. See the last two columns
of "regex input" for help clarifying this subtle point.

Regex input

Filename jwst*file jwst.file jwst.*file jwst.+file

jwstfile.fits Match No match Match No match

jwsttttfile.fits Match No match Match Match

jwstXfile.fits No match Match Match Match

Regex is the filter of last resort!

It is likely that the filter you are attempting to apply can be found within the itself; you should start there.Download Overlay

Before you attempt to use advanced regex syntax in your search for files, you should try searching as you would in a browser or document.
Often, a more complex query is not necessary to match your target filenames.

https://outerspace.stsci.edu/display/MASTDOCS/Download+Overlay

jwst_abc123_file.fits No match No match Match Match

Example Searches
These examples use real filenames produced by the JWST mission. All text in the Regex Input column is "raw"; that is, you should enter it into the
search bar exactly as you see it. Where special characters are used, they either take advantage of regex functionality or are part of the filename.

Regex
Input

Match? Notes

rate A regex search iterates through the filenames and returns matching strings. In this basic case, we've asked for
all files that contain the phrase 'rate' somewhere within the name. It does not matter where this appears within
the name; a simple string search is equivalent to a search in most text editors and internet browsers.

The last example does not match because it does not have "rate" anywhere in its name.

rate\.
fits

Although it's recommended to filter file types using the UI, it's also possible to filter using regex.

The period is a special input that matches any character in our search string, so we escape it here using a
backslash. It is good practice, but unnecessary in this case, to escape the period. There are no files with
names like "rate9fits" that would cause an accidental match.

Matches

jw0278300
1001_0410
3_00001-
seg001_mi
rimage_rat
e.fits

jw0278300
1001_0410
3_00001-
seg001_mi
rimage_rat
eints.fits

Does not
match

 jw0278300
1001_0410
3_00001-
seg001_mi
rimage_un
cal.fits

Matches

jw0278300
1001_0410
3_00001-
seg001_mi
rimage_rat
e.fits

Does not
match

jw0278300
1001_0410
3_00001-
seg001_mi
rimage_rat
eints.fits

jwst_miri_fi
lteroffset_0
006.asdf

fits$ Using the $ character, we can search for patterns at the end of a filename. This is particularly helpful in this
example, where we look for filenames ending in fits. All other file types will be excluded.

(fits|a
sdf)$

We can combine $ with the "or" operator to great effect. In this query, we keep files ending in 'fits' or 'asdf', but
exclude all others.

(?<!
fits|as
df)$

This particular combination of special characters does the opposite of the last example: it excludes all fits and
asdf files. You can chain together multiple, i.e. more than two, file types using the "or" operator. This uses an
advanced .regex operator called "look-behind"

A word of caution that regex contains many such advanced/obscure operators. Getting them to work is only
the first step; remembering they work is even harder!how

Matches

jwst_miri_fl
at_0789.
fits
jw0278300
1001_0410
3_00001-
seg001_mi
rimage_rat
e.fits

Does not
match

jwst_1077.
pmap

jwst_niriss
_distortion
_0032.asdf

Matches

jwst_miri_fl
at_0789.
fits
jwst_niriss
_distortion
_0032.asdf

Does not
match

jwst_1077.
pmap

Matches

jwst_1077.
pmap

Does not
match

jwst_miri_fl
at_0789.
fits

jwst_niriss
_distortion
_0032.asdf

https://www.regular-expressions.info/lookaround.html

seg00
[123]

Brackets limit the set of permissible characters. Our search in this example will find any file that contains
'seg00N', where N is either 1, 2, or 3.

The last example does not match because '7' is not in the allowed set of characters.

seg00
[0-8]

Instead of specifying specific allowed characters, as we do in the above example, regex allows for ranges. In
this case, we've allowed all numbers between (and inclusive of) 0 and 8.

The last example does not match because '9' is not in the allowed set of characters.

Matches

jw0278300
1001_0410
3_00001-
seg002_mi
rimage_cali
nts.fits

jw0278300
1001_0410
3_00001-
seg003_mi
rimage_rat
e.fits

Does not
match

 jw0278300
1001_0410
3_00001-
seg007_mi
rimage_x1
dints.fits

Matches

jw0278300
1001_0410
3_00001-
seg008_mi
rimage_x1
dints.fits

Does not
match

 jw0278300
1001_0410
3_00001-
seg009_mi
rimage_x1
dints.fits

seg00
[^9]

This search returns the same results as the previous, since "not 9" is equivalent to "the numbers 0 to 8" in this
case.

Note: In general, these searches are not equivalent. A filename containing "seg00B" would match , seg00[^9]
since B is not 9. "seg00B" would not match with since B is not in the range 0-8. We can seg00[0-8],
conveniently ignore this caveat for this search, as we know that "seg00B" is nonsense in a JWST filename.

_[a-z]
+ints

This search uses a wildcard character: '+', which means "the repeating character should show up at least
once". We've used a clever trick here by combining it with "[a-z]", the set of all lowercase letters. In essence,
we're asking: "Please find all strings that have an underscore, followed by any sequence of lowercase letters,
followed by 'ints'."

All of these example names end with _xxxints.fits. Our first two examples match because 'cal' and 'rate' are
exclusively lowercase letters. The last example fails because 'x1d' contains a number.

For Further Reading...
Regex101 is an excellent resource to "practice" these queries. The download overlay uses JavaScript syntax.

Matches

jw0278300
1001_0410
3_00001-
seg008_mi
rimage_x1
dints.fits

Does not
match

 jw0278300
1001_0410
3_00001-
seg009_mi
rimage_x1
dints.fits

Matches

jw0278300
1001_0410
3_00001-
seg001_mi
rimage_cali
nts.fits

jw0278300
1001_0410
3_00001-
seg004_mi
rimage_rat
eints.fits

Does not
match

 jw0278300
1001_0410
3_00001-
seg009_mi
rimage_x1
dints.fits

http://regex101.com

	Regular Expressions

