Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

For

...

information on Hubble Advanced Products (HAP), absolute astrometry, and the DrizzlePac , please see the following resources.

________________________

TIMELINESUMMARY:

On December 3, 2019, the first set of improved astrometry data were released in MAST2019:  MAST data products now include updated absolute astrometry for all WFC3 and ACS images. The World Coordinate System (WCS) in the image header of all WFC3 and ACS datasets were updated and may include  one or more corrections. The first makes use of a new updated version of the Hubble Guide Star Catalog (GSC version 2.4.0) which updates the coordinates of the guide stars with the positions from Gaia DR1. This reduces the typical uncertainties in the positions of the guide stars to ~200 mas over the entire sky. Combining this with knowledge of the instrument distortions, an a priori correction was made. an a priori correction is made for any data acquired prior to October 2017 (GSC240).  When possible, an additional second correction was is applied by aligning sources in each HST image directly to the Gaia an external reference catalog catalog, referred to as an a posteriori correction. While some observing modes cannot be aligned to Gaia (e.g. grism and moving target observations) cannot be aligned to any catalog, or the alignment may fail due to a lack of sources in either the HST image or the Gaia reference catalog, approximately 80% of ACS/WFC and 50% of WFC3/IR frames have been directly aligned. For these data products, the typical pointing uncertainty is reduced to ~10 mas, although the uncertainties increase for observations further in time from the Gaia reference epoch (2015.0 for DR1, 2015.5 for DR2). The software used to produce these drizzled products is described on the Pipeline Astrometric Calibration page.

On December 17, 2020, the :MAST began production of Hubble Advanced Products in the HST data calibration pipeline for WFC3 and ACS. These Hubble Legacy Archive (HLA)-style mosaics comprise the data from a single HST visit which are aligned to a common astrometric reference frame. These new 'Hubble Advanced Products' (HAP) are referred to as 'Single Visit Mosaics' (SVMs) and are described in a MAST Newsletter article from December 2020. The data products are all drizzled onto the same north-up pixel grid and may include improved relative alignment across filters for datasets acquired within the same visit, enabling easy comparison of the images through multiple filters. When possible, sources in the images have been aligned directly to the Gaia catalog to improve the WCS. SVM data products with both relative alignment (by filter) and absolute alignment to Gaia will contain the string 'FIT_SVM_GAIA' in the 'WCSNAME' keyword in the science extension of the image header. The software used to compute these new data products is described in the DrizzlePac documentation for Single Visit Mosaic Processing.

On November 23, 2021, MAST began producing production of HAP source catalogs as part of the SVM data products. BecauseSVMproductsincludeanadditionalrelativealignmentacrossfiltersina visit,the drizzled imagesmayusedto generatepoint sourceand segmentcatalogsduring pipeline processing. Thesecatalogssupersedethoseproducedby theHubbleLegacy Archiveand will be the basis ofthenext version of the Hubble Source Catalog.

On April 26, 2022, the HST data calibration and archive pipelines began producing a 2022:  A new Hubble Advanced Product (HAP) to be is now  distributed through MAST. These are cross-visit, cross-proposal mosaics called Multi-Visit Mosaics (MVM), which combine public observations of fields observed multiple times by ACS and WFC3 into a set of products drizzled onto a common, pre-defined pixel grid. These new products were described in a MAST Newsletter article from May 2022 and complement the existing HAP Single Visit Mosaics (SVM) released in December 2020.

In August 2022, a new ACS/WFC3 instrument science report (ACS ISR 2022-03; WFC3 ISR 2022-06) titled 'Improved Absolute Astrometry for ACS and WFC3 Data Products'  was published. This ISR describes updated WCS solutions in MAST data as well two new types of Hubble Advanced Products (HAP A new instrument science report was published: 'Improved Absolute Astrometry for ACS and WFC3 Data Products' (ACS ISR 2022-03; WFC3 ISR 2022-06). 

Abstract:
As of late-2019, MAST data products for ACS and WFC3 include improved absolute astrometry in the image header World Coordinate System (WCS). The updated WCS solutions are computed during pipeline processing by aligning sources in the HST images to a select set of reference catalogs (e.g. Gaia eDR3). We compute statistics on the alignment fraction for each detector and estimate the uncertainties in the WCS solutions when aligning to different reference catalogs. We describe two new types of Hubble Advanced Products (HAP), referred to as Single Visit Mosaics (SVMs) and Multi Visit Mosaics (MVM), which began production in MAST in late-2020 and mid-2022, respectively. The SVM products include an additional relative alignment across filters in a visit, and the drizzled images are used to generate point source and segment catalogs during pipeline processing. These catalogs supersede those produced by the Hubble Legacy Archive and will be the basis of the next version of the Hubble Source Catalog. The MVM data products combine all ACS/WFC, WFC3/UVIS, or WFC3/IR images falling within a pre-defined 0.2° x 0.2° 'sky cell' for each detector+filter, which are drizzled to a common all-sky pixel grid. When combining observations over a large date range, MVMs may have photometric errors of several percent or systematic alignment errors when combining visits with different catalog solutions. We therefore recommend these to be used as ‘discovery images’ for comparing observations in different detectors and passbands and not for precise photometry.

...

Historically, the accuracy of HST absolute astrometry has been limited primarily by uncertainties in the celestial coordinates of the guide stars as specified in the Guide Star Catalog. GSC 1.1 had nominal rms errors of ~0.5 arcsec per coordinate, with errors as large as ~1‐3 arcsec reported near the plate edges. This accuracy improved substantially in October 2005 (during Cycle 15) with the introduction of GSC 2.3.2, where rms errors per coordinate were reduced to ~0.3 arcsec over the whole sky.  An updated version of the catalog (GSC 2.4.0) was released in October 2017, improving the celestial coordinates with the positions from Gaia DR1 and reducing errors to < 30mas over the entire sky. After including uncertainties in the positions of the science instruments (SIs) in the alignment of the focal plane to the Fine Guidance Sensors (FGS), the total error in HST absolute astrometry is ~1 arcsec for observations made with GSC 1.1, ~0.3 arcsec for those with GSC 2.3.2, and ~0.2 arcsec for those with GSC 2.4.0. These errors are reduced to ~10 mas for observations with a posteriori alignment to Gaia. A summary of pointing errors over the HST lifetime and the expected accuracy of the updated WCS solutions is provided in Table 1. 

Table 1: Key Guide Star Catalog releases and associated errors 
positionsWCSNAME=  'IDC*_FIT_*_GAIADR*'
WCSNAME=  'IDC*-GSC240',   'IDC*-HSC30'

Catalog

Release Date

Mean Epoch of catalog

Typical errors

Worst errors

Total Error (including SI to FGS alignment)

Comment

GSC 2.4.0 + Gaia FitDec 20192015.50.01"0.01"positions

Typical errors

Worst errors

Total Error (including SI to FGS alignment)

Comment

GSC 2.4.0

Oct 2017

2015.0

0.03”


~0.2”

GSC2.3.4 aligned to Gaia DR1   
Complete GSC Summary


GSC 2.3.3Oct 2009



WFC3 installed May 2009

GSC 2.3.2

Oct 2005

1992.5

0.3”

0.75”

~0.3”

Public Release
GSC 1.1 and GSC 2.3.2 Comparison

GSC 2.2.0

Jun 2001





Public Release
ACS installed Mar 2002

GSC 2.0

Jan 2000





Science target fields only; GSC2 summary

GSC 1.1

Aug 1992

1981.8

0.5”

~1”

~1”

First version published for the user community
Used by HST operations prior to Cycle 15
WFPC2 installed Dec 1993

GSC 1.0

Jun 1989



1-2”


 GSC1 summary

HST Astrometry Project

The coordinates populated in the FITS headers of HST observations retrieved from DADS (the HST Data Archiving and Distribution Service) were derived based on the guide star coordinates in use at the time of the observation. As the accuracy in these catalogs were refined over time, the pointing accuracy of HST has also improved. Table 1 lists the catalog in use at the time of installation of the three main imaging cameras (WFPC2, ACS, and WFC3) and the typical errors at each epoch.

...