You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 69 Next »

Thumbnail and DescriptionCreditFile TypeFile SizeFile ExensionFilenameFile LocationSource Location

Nancy Grace Roman, shown here at NASA's Goddard Space Flight Center in approximately 1972, was the first female executive and the first Chief of Astronomy at NASA

NASAImage701.2 KBJPGnancy grace romanhttps://stsci.box.com/s/pjwtwa4q7z199puxppt3q4niwmae6whahttps://roman.gsfc.nasa.gov/aboutNGR.html

Learn about Nancy Grace Roman, her contribution to NASA missions, and how NASA has honored her.

NASA's Goddard Space Flight Center


Music: "Rising Tides" from Universal Production Music

Video956.8 MBMP4Roman_Biography_Best_1080https://stsci.box.com/s/i26zvhytv00tqiwu1yw1t4vsmbdn0w5whttps://svs.gsfc.nasa.gov/13608

The original prototypes of the LEGO® Ideas "Women of NASA" set displayed in front of the Apollo Lunar Module in the Boeing Milestones of Flight Hall at the Smithsonian’s National Air and Space Museum in Washington, DC, August 20, 2018. Credit: National Air and Space Museum

Source:


Smithsonian's National Air and Space Museum

Rights Usage:


Contact Smithsonian Institution

Image2 MBJPGNASM2018-02043https://stsci.box.com/s/rrcyydzfzkgvy2v299smf185edd6gxbjhttps://airandspace.si.edu/multimedia-gallery/nasm2018-02043jpg

Nancy Grace Roman, standing here in front of a 1/6-scale model of the Hubble Space Telescope at NASA's Goddard Space Flight Center, is known to many as the "Mother of Hubble" for her foundational role in the observatory's planning and program structure, paving the way for missions like the Roman Space Telescope (formerly WFIRST).

NASAImage1 MBJPGNGR_Still_1https://stsci.box.com/s/cwp47ll85gode0u4fakyxeriklk5xw32https://roman.gsfc.nasa.gov/aboutNGR.html

Dr. Nancy Grace Roman visits James Webb Space Telescope (JWST) and the Hubble Project Team.

Photographer: NASA/GSFC/Bill HrybykImage4 MBJPGGSFC_20170331_2017-11028_037_orighttps://stsci.box.com/s/wpbl1g90uren6f4iheg1cedv7105g1kphttps://images.nasa.gov/details-GSFC_20170331_2017-11028_037

Dr. Nancy Grace Roman visits James Webb Space Telescope (JWST) and the Hubble Project Team.

Photographer: NASA/GSFC/Bill HrybykImage6 MBJPGGSFC_20170331_2017-11028_014_orighttps://stsci.box.com/s/2xg0hbfofxp3gubg345azk54st4sdvn5https://images.nasa.gov/details-GSFC_20170331_2017-11028_014

NASA's Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler presents the Women in Aerospace's Lifetime Achievement Award to retired NASA chief astronomer Nancy Grace Roman at the organization's annual awards ceremony and banquet held at the Ritz-Carlton Hotel in Arlington, VA on Tuesday, Oct. 26, 2010. Four current NASA leaders and one retiree were recognized for their work by Women in Aerospace. The event celebrates women's professional excellence in aerospace and honors women who have made outstanding contributions to the aerospace community. Photo Credit: (NASA/Bill Ingalls)

Photographer: (NASA/Bill Ingalls)Image16.6 MBTIF201010260006HQ_orighttps://stsci.box.com/s/19s43nv877zxbglxflxgkww09hyhru7yhttps://images.nasa.gov/details-201010260006HQ

Artwork of Nancy Grace Roman and Vera C. Rubin.

Developed for a social media campaign during Women's History Month by STScI and the Vera C. Rubin Observatory.

Illustration by J. Kang/STScIImage597 KBPNGRoman_Rubin_tw

Error rendering macro 'widget'

java.lang.IllegalArgumentException: The provided url- https://api.twitter.com/1/statuses/oembed.json?id=1366426052126511104&omit_script=true&lang=en is not included in the whitelist!.Please add the url to whitelist to allow access

Artwork of Nancy Grace Roman and Vera C. Rubin.

Sized for Facebook posts.

Developed for a social media campaign during Women's History Month by STScI and the Vera C. Rubin Observatory.

Illustration by J. Kang/STScIImage2.3 MBPNGRoman_Rubin_fb

The history of women's contributions to the fields of science, technology, engineering, and math (STEM) is long and varied. But it has also often been overlooked or underrepresented. This series highlights only a very few of the women who have made important discoveries and have had a crucial impact on STEM fields. This, however, is not just a look into the past. Today, women are in every STEM discipline, in every type of job, and represent the widest range of background and experiences.


Download the free poster set to use in your space

NASA


Illustration: Kristin DiVona

Image3.4 MBPDFroman_posterhttps://stsci.box.com/s/qif9riups3ye1w650tg0u854dz62hcg9https://chandra.si.edu/women/images/roman.pdf

Nancy with a model of an Orbiting Solar Observatory.

NASAImage1.2 MBPNGnancy-modelhttps://stsci.box.com/s/ewta914jgirwifgx4g4v7geynckws1rshttps://hackaday.com/2018/04/03/nancy-grace-roman-mother-of-the-hubble/








Thumbnail and DescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location

Learn more about the Roman Space Telescope spacecraft with this short tour of the main systems.

NASA's Goddard Space Flight Center


Music: “Phenomenon" from Above and Below Written and produced by Lars Leonhard

Video807.1 MBMP413295_Roman_360_Best_1080https://stsci.box.com/s/9m81dvpe9zpfjc41zeml5hnq0o0kdh14https://svs.gsfc.nasa.gov/13295

Still frame of spacecraft animation

NASA's Goddard Space Flight CenterImage48.4 KBJPGTurntableRev01A_ProRes_Alpha.00001_printhttps://stsci.box.com/s/e5mcy7dm5i4cp48feffpktv9fscmto0shttps://roman.gsfc.nasa.gov/gallery-spacecraftillustrations.html

Still frame of spacecraft animation

NASA's Goddard Space Flight CenterImage191.4 KBJPGRoman_Space_Telescope_Still_1https://stsci.box.com/s/iddn4cojy0peaq68urgiv2m5xvautwiwhttps://svs.gsfc.nasa.gov/13621

Still frame of spacecraft animation

NASA's Goddard Space Flight CenterImage172.2 KBJPGRoman_Space_Telescope_Still_2https://stsci.box.com/s/axgzqky3u55uwjv3iwaags1gvewdz332https://svs.gsfc.nasa.gov/13621

Still frame of spacecraft animation

NASA's Goddard Space Flight CenterImage178.3 KBJPGRoman_Space_Telescope_Still_3https://stsci.box.com/s/3hr4ctcz7b61j6b14g4lh43ejcfx7wvkhttps://svs.gsfc.nasa.gov/13621

Still frame of spacecraft animation

NASA's Goddard Space Flight CenterImage507.8 KBJPGRST_2020_Stillhttps://stsci.box.com/s/l6dcfm49nydoschci88jnvmn8o5d75q8https://svs.gsfc.nasa.gov/13621

Still frame of spacecraft animation

NASA's Goddard Space Flight CenterImage755.2 KBJPGRoman_Space_Telescope_Animation1_Still2https://stsci.box.com/s/qy3f9jyhy3aqxpn1su9qx9vjon0pid1ghttps://svs.gsfc.nasa.gov/13621

Stylized still frame of spacecraft animation

NASA's Goddard Space Flight CenterImage2 MBJPGTrailer_still_1https://stsci.box.com/s/g526b9ntswvm4iovkiqjuksswa8jtodqhttps://svs.gsfc.nasa.gov/13621

Stylized still frame of spacecraft animation

NASA's Goddard Space Flight CenterImage1.5 MBJPGRoman_Still_2https://stsci.box.com/s/h7k7y22w2rpqr0w3q46fdqrp5atysh1fhttps://svs.gsfc.nasa.gov/13621

Stylized still frame of spacecraft animation and name

NASA's Goddard Space Flight CenterImage1.8 MBJPGRoman_Title_1https://stsci.box.com/s/de2mwgl5vg55u3zidr73ztyr498fobumhttps://svs.gsfc.nasa.gov/13621

Still frame of spacecraft animation

NASA's Goddard Space Flight CenterImage38.3 KBJPGTurntableWithBarrelRollA_4k.00738_printhttps://stsci.box.com/s/ckg6p2ta4vpw1nlsuk2xlpllt5n55w21https://svs.gsfc.nasa.gov/13621

"Beauty pass" animation of the Roman Space Telescope spacecraft

NASA's Goddard Space Flight CenterVideo45.4 MBMP4Roman_Space_Telescope_Beauty1_1080https://stsci.box.com/s/5sg8hzhiya6mm8r799fpul6w36wuuh7xhttps://svs.gsfc.nasa.gov/13621

"Beauty pass" animation of the Roman Space Telescope spacecraft

NASA's Goddard Space Flight CenterVideo45.5 MBMP4Roman_Space_Telescope_Beauty2_1080https://stsci.box.com/s/frk2ko9hk4ydq2k8uxkohxvvhk6sy8uzhttps://svs.gsfc.nasa.gov/13621

Welcome to NASA's upcoming infrared survey mission, taking a wider view of the cosmos.

NASA's Goddard Space Flight CenterVideo281.5 MBMP4Roman_Space_Telescope_Trailer_Best_1080https://stsci.box.com/s/ai1fe4kjh29ao3gcqbi93xrku2u9b5uihttps://svs.gsfc.nasa.gov/13606

The Roman Space Telescope’s primary mirror reflects an American flag. Its surface is figured to a level hundreds of times finer than a typical household mirror.

L3Harris TechnologiesImage9 MBJPGpm10https://stsci.box.com/s/xzo05oilxq7upj38wg1gdvitxa111y95https://www.nasa.gov/feature/goddard/2020/primary-mirror-for-nasas-roman-space-telescope-completed

The Nancy Grace Roman Space Telescope’s primary mirror, which will collect and focus light from cosmic objects near and far, has been completed. Using this mirror, Roman will capture stunning space vistas with a field of view 100 times greater than Hubble images.

L3Harris TechnologiesImage1.7 MBJPGpm2_1https://stsci.box.com/s/bou373c30lnu38zn7bcrshm8rie56656https://www.nasa.gov/feature/goddard/2020/primary-mirror-for-nasas-roman-space-telescope-completed

Crane operators lower the support equipment to move the Roman Space Telescope’s primary mirror. Using this mirror, Roman will provide a new view into the universe, helping scientists solve cosmic mysteries related to dark matter, dark energy, and planets around other stars.

L3Harris TechnologiesImage43.7 KBJPGpm3https://stsci.box.com/s/ozwncqvt4ml3idufa4rt00rjvwkikkamhttps://www.nasa.gov/feature/goddard/2020/primary-mirror-for-nasas-roman-space-telescope-completed

Members of the Roman Space Telescope team pose with the telescope’s primary mirror at L3 Harris Technologies in Rochester, New York. The telescope just passed a key milestone review, permitting the team to move on to finalizing the telescope design.

NASA's Goddard Space Flight CenterImage4 MBPNGWFIRSTNASAPhotohttps://stsci.box.com/s/2aj4xjo30g67or6pznpf9vrccmuevcmkhttps://svs.gsfc.nasa.gov/13295








ThumbnailCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location

The Nancy Grace Roman Space Telescope is a next-generation space telescope that will survey the infrared universe from beyond the orbit of the Moon. The spacecraft's giant camera, the Wide Field Instrument (WFI), will be fundamental to this exploration. The WFI features the same angular resolution as Hubble but with 100 times the field of view. Data it gathers will enable scientists to discover new and uniquely detailed information about planetary systems around other stars. The WFI will also map how matter is structured and distributed throughout the cosmos, which should ultimately allow scientists to discover the fate of the universe. Watch this video to see a simplified version of how it works.

NASA's Goddard Space Flight Center.


Music" "Horizon Ahead" from Killer Tracks

Video269.5 MBMP413235_WFI_Roman_Best_1080https://stsci.box.com/s/eb54z0uwxchl1re2zwz2nj5ogy44jcprhttps://svs.gsfc.nasa.gov/13235

4k animation of the telescope and Wide Field Instrument, showing a simplified exploded view of how it works.

NASA's Goddard Space Flight Center/CI LabVideo384.5 MBMP4GSFC_20190626_WFIRST_m13235_widefield_Animationhttps://stsci.box.com/s/tltx2mth63vklcet8jxj3k9fbk7n9ifuhttps://svs.gsfc.nasa.gov/13235

Animated GIF of the Roman Wide Field Instrument.

NASA's Goddard Space Flight CenterAnimation1.8 MBGIFWFIRST_WideFieldInstrumenthttps://stsci.box.com/s/itwbh12qrd21uc9ejmc6hugpv3txe8tqhttps://svs.gsfc.nasa.gov/13235








ThumbnailCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location

Watch this video to learn more about the Roman Space Telescope's coronagraph instrument.

NASA's Goddard Space Flight Center


Music: "Concept of Motion" from Universe Production Music

Video96.8 MBMP413325_Roman_CGI_1080https://stsci.box.com/s/yh5oh6lxu1um85pvqsz0j32iokyxfiv0https://svs.gsfc.nasa.gov/13325
















ThumbnailCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location
























ThumbnailCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location

Rogue planets are free-floating planets that do not orbit a star and instead travel through space. Scientists think they are outcasts from developing planetary systems and may be very numerous throught the galaxy.  This illustration shows a rogue planet traveling through space.

NASA/JPL-Caltech/R. Hurt (Caltech-IPAC)Video30 MBMP413644_Rogue_Planet_1080https://stsci.box.com/s/m6pxbptqq1xwopul054cib53a8476k8bhttps://svs.gsfc.nasa.gov/13644
















Thumbnail and DescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location

This Roman simulated image is 1/140th a Roman field of view. There are so many stars at the center of our galaxy that in other telescopes’ views they may blur together, but Roman will see them with high clarity, distinguishing stars in the center bulge from those in the surrounding disk. Tracking the precise positions and colors of individual stars over time will provide insight on the star-formation processes in the Milky Way bulge, bar, and disk.

Matthew T. Penny (Ohio State University)Image5.5 MBPNGSimulated_Bulge_image-WZcolor


Published article: https://iopscience.iop.org/article/10.3847/1538-4365/aafb69/pdf 

Penny, M. T., 2019, ApJS, 241, 3P

This image of the Eagle Nebula showcases the superb resolution and wide field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. In the center is Hubble's view of the Pillars of Creation - superimposed on a ground-based image.  Roman’s Wide Field Instrument field of view is highlighted. Roman’s images will have the resolution of Hubble while covering an area about 100 times larger in a single pointing.


The wide field image for the Eagle nebula is a combination between an image taken by NSF’s 0.9-meter telescope at Kitt Peak National Observatory (Credit: T.A.Rector (NRAO/AUI/NSF and NOIRLab/NSF/AURA) and B.A.Wolpa (NOIRLab/NSF/AURA)) and an image by amateur astronomer Liam Murphy.

L. Hustak (STScI)

Acknowledgement: L. Murphy, T.A.Rector (NRAO/AUI/NSF and NOAO/AURA/NSF) and B.A.Wolpa (NOAO/AURA/NSF)

Image9.7 MBPNGEagle_Zoom_3840x2160https://stsci.box.com/s/vo03mnk2vky8kwm6w3sd2wnw1rxppcod

N/A


Related Press Release - https://hubblesite.org/contents/news-releases/2020/news-2020-41

This image of the Eagle Nebula showcases the superb resolution and wide field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. In the center is Hubble's view of the Pillars of Creation - superimposed on a ground-based image.  Roman’s Wide Field Instrument field of view is highlighted. Roman’s images will have the resolution of Hubble while covering an area about 100 times larger in a single pointing.  This version has labels.


The wide field image for the Eagle nebula is a combination between an image taken by NSF’s 0.9-meter telescope at Kitt Peak National Observatory (Credit: T.A.Rector (NRAO/AUI/NSF and NOIRLab/NSF/AURA) and B.A.Wolpa (NOIRLab/NSF/AURA)) and an image by amateur astronomer Liam Murphy.

L. Hustak (STScI)

Acknowledgement: L. Murphy, T.A.Rector (NRAO/AUI/NSF and NOAO/AURA/NSF) and B.A.Wolpa (NOAO/AURA/NSF)

Image9.7 MBPNGEagle_Zoom_RomanHubbleLabeled_3840x2160https://stsci.box.com/s/ybkkkyed2qoqgsph2zsmp8k7olgz7ji0

N/A


Related Press Release - https://hubblesite.org/contents/news-releases/2020/news-2020-41

This video of the Eagle Nebula showcases the superb resolution and wide field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. It begins with a Hubble image of the famous Pillars of Creation superimposed on a ground-based image. The view then zooms out to show the full field of view of Roman’s Wide Field Instrument. Roman’s images will have the resolution of Hubble while covering an area about 100 times larger in a single pointing.


The wide field image for the Eagle nebula is a combination between an image taken by NSF’s 0.9-meter telescope at Kitt Peak National Observatory (Credit: T.A.Rector (NRAO/AUI/NSF and NOIRLab/NSF/AURA) and B.A.Wolpa (NOIRLab/NSF/AURA)) and an image by amateur astronomer Liam Murphy.

L. Hustak (STScI)

Acknowledgement: L. Murphy, T.A.Rector (NRAO/AUI/NSF and NOAO/AURA/NSF) and B.A.Wolpa (NOAO/AURA/NSF)

Video41.7 MBMP4STScI-H-v2041a-3840x2160https://stsci.box.com/s/0hdnebsckqiyi55segnf3wo5bov4hpbrhttps://hubblesite.org/contents/media/videos/2020/41/1282-Video?news=true

This video of the Eagle Nebula showcases the superb resolution and wide field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. It begins with a Hubble image of the famous Pillars of Creation superimposed on a ground-based image. The view then zooms out to show the full field of view of Roman’s Wide Field Instrument. Roman’s images will have the resolution of Hubble while covering an area about 100 times larger in a single pointing.  This version has labels.


The wide field image for the Eagle nebula is a combination between an image taken by NSF’s 0.9-meter telescope at Kitt Peak National Observatory (Credit: T.A.Rector (NRAO/AUI/NSF and NOIRLab/NSF/AURA) and B.A.Wolpa (NOIRLab/NSF/AURA)) and an image by amateur astronomer Liam Murphy.

L. Hustak (STScI)

Acknowledgement: L. Murphy, T.A.Rector (NRAO/AUI/NSF and NOAO/AURA/NSF) and B.A.Wolpa (NOAO/AURA/NSF)


Video42.3 MBMP4STScI-H-v2041c-3840x2160https://stsci.box.com/s/d45dk6epga6vje40o7wzgrnmzdura80ahttps://hubblesite.org/contents/media/videos/2020/41/1284-Video?news=true

This simulated image of a portion of the Andromeda galaxy highlights the high resolution, large field of view, and unique footprint of NASA’s upcoming Nancy Grace Roman Space Telescope.

NASA, STScI, and B.F. Williams (University of Washington)


Image composition: STScI

Image45.4 MBPNGSTSCI-H-p2002a-q-7237x4453https://stsci.box.com/s/tu9i8tuiqnyhoizcd8x6gwubasg788kmhttps://hubblesite.org/contents/media/images/2020/02/4608-Image?news=true

Details of a simulated image of the Andromeda galaxy highlight the high resolution of Roman imagery. Unlike a typical wide field camera, which can cover a large area of sky but cannot reveal fine details, Roman will provide both a large field of view and high resolution. The details shown here each cover about 0.0013 square degrees of sky, the equivalent to a single infrared image from Hubble’s WFC3 camera. The pixel scale is 0.11 arcseconds/pixel.

NASA, STScI, and B. F. Williams (University of Washington)


Image composition: STScI

Image56.1 MBPNGSTSCI-H-p2002b-q-7237x5121https://stsci.box.com/s/0d8yszqylp7oum3m4yvx1e885tsyh25khttps://hubblesite.org/contents/media/images/2020/02/4609-Image?news=true

Details of a simulated image of the Andromeda galaxy highlight the high resolution of Roman imagery. Unlike a typical wide field camera, which can cover a large area of sky but cannot reveal fine details, Roman will provide both a large field of view and high resolution. The details shown here each cover about 0.0013 square degrees of sky, the equivalent to a single infrared image from Hubble’s WFC3 camera. The pixel scale is 0.11 arcseconds/pixel.  This version has additional labels.

NASA, STScI, and B. F. Williams (University of Washington)


Image composition: STScI

Image56.1 MBPNGSTSCI-H-p2002c-q-7237x5121https://stsci.box.com/s/g7nhs7jr4g5s9pmpmbmsvf1c8af866xthttps://hubblesite.org/contents/media/images/2020/02/4610-Image?news=true

A composite figure of the Andromeda galaxy (M31) highlights the extremely large field of view of NASA’s upcoming Nancy Grace Roman Space Telescope.

Background image: Digitized Sky Survey and R. Gendler


Moon image: NASA, GSFC, and Arizona State University


Roman simulation images: NASA, STScI, and B. F. Williams (University of Washington)


Image composition: STScI

Image38.3 MBPNGSTSCI-H-p2002d-f-5400x5400https://stsci.box.com/s/v0dn04p7uzemp5zis8im8wmqq52npc46https://hubblesite.org/contents/media/images/2020/02/4611-Image?news=true

A composite figure of the Andromeda galaxy (M31) highlights the extremely large field of view of NASA’s upcoming Nancy Grace Roman Space Telescope.  This version has additional labels.

Background image: Digitized Sky Survey and R. Gendler


Moon image: NASA, GSFC, and Arizona State University


Roman simulation images : NASA, STScI, and B. F. Williams (University of Washington)


Image composition: STScI

Image38.4 MBPNGSTSCI-H-p2002e-f-5400x5400https://stsci.box.com/s/587tn7f4cpsbvxzs1a9c1cpujmn27wruhttps://hubblesite.org/contents/media/images/2020/02/4612-Image?news=true

A composite figure of the Andromeda galaxy (M31) highlights the extremely large field of view of NASA’s upcoming Nancy Grace Roman Space Telescope.  Inside the Roman footprint is simulated Roman data, which you can see more clearly in the three pull-outs - each one being a Hubble field-of-view.


In addition to the resolved stars in Andromeda, the insets reveal:

The top inset:  star cluster and background galaxy

Middle inset: dust cloud

Bottom inset: young star cluster

Background image: Digitized Sky Survey and R. Gendler


Roman simulation images: NASA, STScI, and B. F. Williams (University of Washington)


Image composition: STScI

Image50.5 MBTIFandromeda_context_sim_and_pulloutshttps://stsci.box.com/s/gjvtupzzyulw41a7lx5u4ckfmitfoere

N/A


Related press-release:  https://hubblesite.org/contents/media/images/2020/02/4612-Image?news=true

NASA’s Nancy Grace Roman Space Telescope, will capture the equivalent of 100 high-resolution Hubble images in a single shot, imaging large areas of the sky 1,000 times faster than Hubble. In several months, the Roman Space Telescope could survey as much of the sky in near-infrared light—in just as much detail—as Hubble has over its entire three decades.

Although Roman has not yet opened its wide, keen eyes on the universe, astronomers are already running simulations to demonstrate what it will be able to see and plan their observations.

This simulated image of a portion of our neighboring galaxy Andromeda (M31) provides a preview of the vast expanse and fine detail that can be covered with just a single pointing of the Roman Space Telescope. Using information gleaned from hundreds of Hubble observations, the simulated image covers a swath roughly 34,000 light-years across, showcasing the red and infrared light of more than 50 million individual stars detectable with Roman.

Watch the video to learn more about the Roman Space Telescope's simulated image.

NASA's Goddard Space Flight Center


Music: "Flight Impressions" from Universal Production Music

Video936.5 MBMP413497_Simulated_Image_Roman_Best_1080https://stsci.box.com/s/ad3bo5j1m9p5ubjnkz1h5iku0n5pliyphttps://svs.gsfc.nasa.gov/13497

The Carina Nebula is an example of a star-forming region with many stages of the stellar lifecycle captured by Hubble. There is no guarantee that Roman will be studying this same area.

This is the clean version of the image.

Background image: Nathan Smith, University of Minnesota/NOIRLab/NOAO/AURA/NSFHubble

Mosaic: Hubble Image: NASAESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA); CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF


Mystic Mt.: NASAESA, and M. Livio and the Hubble 20th Anniversary Team (STScI)


Eta Carina: NASAESA, N. Smith (University of Arizona), and J. Morse (BoldlyGo Institute)


Trumpler 14: NASAESA, and J. Maíz Apellániz (Institute of Astrophysics of Andalusia, Spain);
Acknowledgment: N. Smith (University of Arizona)

Composition:  A. Pagan (STScI)

Image2.9 MBPNGRoman_Stellar_LC_slide_clean_1920x1080

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

The Carina Nebula is an example of a star-forming region with many stages of the stellar lifecycle captured by Hubble. There is no guarantee that Roman will be studying this same area.

This is the annotated version of the image.

Background image: Nathan Smith, University of Minnesota/NOIRLab/NOAO/AURA/NSFHubble

Mosaic: Hubble Image: NASAESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA); CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF


Mystic Mt.: NASAESA, and M. Livio and the Hubble 20th Anniversary Team (STScI)


Eta Carina: NASAESA, N. Smith (University of Arizona), and J. Morse (BoldlyGo Institute)


Trumpler 14: NASAESA, and J. Maíz Apellániz (Institute of Astrophysics of Andalusia, Spain);
Acknowledgment: N. Smith (University of Arizona)

Composition:  A. Pagan (STScI)

Image2.9 MBPNGRoman_Stellar_LC_slide_annotated_wo_Title_1920x1080

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

The Carina Nebula is an example of a star-forming region with many stages of the stellar lifecycle captured by Hubble. There is no guarantee that Roman will be studying this same area.

This is the full annotated version of the image, including title and Hubble instruments used in the pull-out Hubble images.

Background image: Nathan Smith, University of Minnesota/NOIRLab/NOAO/AURA/NSFHubble

Mosaic: Hubble Image: NASAESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA); CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF


Mystic Mt.: NASAESA, and M. Livio and the Hubble 20th Anniversary Team (STScI)


Eta Carina: NASAESA, N. Smith (University of Arizona), and J. Morse (BoldlyGo Institute)


Trumpler 14: NASAESA, and J. Maíz Apellániz (Institute of Astrophysics of Andalusia, Spain);
Acknowledgment: N. Smith (University of Arizona)

Composition:  A. Pagan (STScI)

Image2.9 MBPNGRoman_Stellar_LC_slide_annotated_wInstruments_1920x1080

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

Thumbnail and DescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location

This image of galaxy cluster Abell 426 showcases the superb resolution and wide field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. It highlights Hubble's view of the galaxy NGC 1275 superimposed on a ground-based image. Roman’s Wide Field Instrument field of view is highlighted. Roman’s images will have the resolution of Hubble while covering an area about 100 times larger in a single pointing.


The wide field image for Abell 426 is composed of a combination of the Digitized Sky Survey and an image by Petri Kehusmaa.

L. Hustak (STScI)

Acknowledgement: Digitized Sky Survey and P. Kehusmaa

Image8.3 MBPNGAbell246_Zoom_3840x2160https://stsci.box.com/s/r6deulxldsro4vvfk8uu6owem39hm78y

N/A


Related Press Release - https://hubblesite.org/contents/news-releases/2020/news-2020-41

This image of galaxy cluster Abell 426 showcases the superb resolution and wide field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. It highlights Hubble's view of the galaxy NGC 1275 superimposed on a ground-based image. Roman’s Wide Field Instrument field of view is highlighted. Roman’s images will have the resolution of Hubble while covering an area about 100 times larger in a single pointing.  This version has labels.


The wide field image for Abell 426 is composed of a combination of the Digitized Sky Survey and an image by Petri Kehusmaa.

L. Hustak (STScI)

Acknowledgement: Digitized Sky Survey and P. Kehusmaa

Image8.3 MBPNGAbell246_Zoom_RomanHubbleLabeled_3840x2160https://stsci.box.com/s/38thedm791ragzsrbixdnbq1yczt6cq6

N/A


Related Press Release - https://hubblesite.org/contents/news-releases/2020/news-2020-41

This video of galaxy cluster Abell 426 showcases the superb resolution and wide field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. It begins with a Hubble image of the galaxy NGC 1275 superimposed on a ground-based image. The view then zooms out to show the full field of view of Roman’s Wide Field Instrument. Roman’s images will have the resolution of Hubble while covering an area about 100 times larger in a single pointing.


The wide field image for Abell 426 is composed of a combination of the Digitized Sky Survey and an image by Petri Kehusmaa.

L. Hustak (STScI)

Acknowledgement: Digitized Sky Survey and P. Kehusmaa

Video22.9 MBMP4STScI-H-v2041b-3840x2160https://stsci.box.com/s/omngflj4hxisfa39wsp858gjacgg34a0https://hubblesite.org/contents/media/videos/2020/41/1283-Video?news=true

This video of galaxy cluster Abell 426 showcases the superb resolution and wide field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. It begins with a Hubble image of the galaxy NGC 1275 superimposed on a ground-based image. The view then zooms out to show the full field of view of Roman’s Wide Field Instrument. Roman’s images will have the resolution of Hubble while covering an area about 100 times larger in a single pointing.  This version has labels.


The wide field image for Abell 426 is composed of a combination of the Digitized Sky Survey and an image by Petri Kehusmaa.

L. Hustak (STScI)

Acknowledgement: Digitized Sky Survey and P. Kehusmaa

Video23.8 MBMP4STScI-H-v2041d-3840x2160https://stsci.box.com/s/v0dmg4druro82sk89tfnqtbsu58tvfkshttps://hubblesite.org/contents/media/videos/2020/41/1285-Video?news=true

Roman will find a diversity of galaxies at different stages of their evolution—galaxies in small groups and in large clusters, merging galaxies, and newborn galaxies.  

By capturing both volume and detail, Roman will greatly advance knowledge about galaxies and their variety of forms, and also their evolution over the history of the universe.

This image showcases separate Hubble observations of select galaxies in the Coma Cluster, within a single Roman field of view.

This version has basic annotations.

Background Image: Digitized Sky Survey

Galaxy Images:  NASAESA, M. Sun (University of Alabama), W. Cramer and J. Kenney (Yale University), J. Mack (STScI), and J. Madrid (Australian Telescope National Facility) and Hubble Heritage Team (STScI/AURA).

Image Composition:  A. Pagan (STScI)

Image3.8 MBPNGComaCluster_Roman_Galaxy_Morphology_1920x1080_clean

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

Roman will find a diversity of galaxies at different stages of their evolution—galaxies in small groups and in large clusters, merging galaxies, and newborn galaxies.  

By capturing both volume and detail, Roman will greatly advance knowledge about galaxies and their variety of forms, and also their evolution over the history of the universe.

This image showcases separate Hubble observations of select galaxies in the Coma Cluster, within a single Roman field of view.

This version has additional annotations.

Background Image: Digitized Sky Survey

Galaxy Images:  NASAESA, M. Sun (University of Alabama), W. Cramer and J. Kenney (Yale University), J. Mack (STScI), and J. Madrid (Australian Telescope National Facility) and Hubble Heritage Team (STScI/AURA).

Image Composition:  A. Pagan (STScI)

Image3.8 MBPNGGalaxyMorphology_RomanSlide_1920x1080_annotated_woTitle

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

This image showcases UGC 2885 (Rubin's Galaxy), with Hubble's view in inset and the Roman field of view.  Roman will be able to capture the entire halo of galaxies like Rubin in a single pointing, which is about 100 times larger than a Hubble pointing.

Hubble's View of Rubin's Galaxy:  NASA, ESA, and B. Holwerda (University of Louisville)


Background Image: DSS


Image Composition: J. DePasquale (STScI)

Image46.5 MBTIFrubins_pullouthttps://stsci.box.com/s/dq5r4xkqoahwsh8st12405alxna1iztq

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation


Hubble's Rubin Galaxy press release - https://hubblesite.org/contents/news-releases/2020/news-2020-1

This image showcases UGC 2885 (Rubin's Galaxy), with Hubble's view in inset and the Roman field of view.  Roman will be able to capture the entire halo of galaxies like Rubin in a single pointing, which is about 100 times larger than a Hubble pointing.


In this version, an estimate of the extent of the halo of Rubin's Galaxy is shown.

Hubble's View of Rubin's Galaxy:  NASA, ESA, and B. Holwerda (University of Louisville)


Background Image: DSS


Image composition: J. DePasquale (STScI)

Image46.5 MBTIFrubins_pullout_withHalohttps://stsci.box.com/s/05rcljanmdjnw504os94t4fw31v8tmns

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation


Hubble's Rubin Galaxy press release - https://hubblesite.org/contents/news-releases/2020/news-2020-1

This composite image illustrates the possibility of a Roman Space Telescope “ultra deep field” observation. In a deep field, astronomers collect light from a patch of sky for an extended period of time to reveal the faintest and most distant objects. This view centers on the Hubble Ultra Deep Field (outlined in blue), which represents the deepest portrait of the universe ever achieved by humankind, at visible, ultraviolet and near-infrared wavelengths. Two insets reveal stunning details of the galaxies within the field.

Beyond the Hubble Ultra Deep Field, additional observations obtained over the past two decades have filled in the surrounding space. These wider Hubble observations reveal over 265,000 galaxies, but are much shallower than the Hubble Ultra Deep field in terms of the most distant galaxies observed.

These Hubble images are overlaid on an even wider view using ground-based data from the Digitized Sky Survey. An orange outline shows the field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. Roman’s 18 detectors will be able to observe an area of sky at least 100 times larger than the Hubble Ultra Deep Field at one time, with the same crisp sharpness as Hubble.

NASA, ESA, and A. Koekemoer (STScI)

Acknowledgement: Digitized Sky Survey

Image6 MBTIFSTScI-R-p2103a-f-1920x1080

https://hubblesite.org/contents/media/images/2021/03/4797-Image?news=true

This composite annotated image illustrates the possibility of a Roman Space Telescope “ultra deep field” observation. In a deep field, astronomers collect light from a patch of sky for an extended period of time to reveal the faintest and most distant objects. This view centers on the Hubble Ultra Deep Field (outlined in blue), which represents the deepest portrait of the universe ever achieved by humankind, at visible, ultraviolet and near-infrared wavelengths. Two insets reveal stunning details of the galaxies within the field.

Beyond the Hubble Ultra Deep Field, additional observations obtained over the past two decades have filled in the surrounding space. These wider Hubble observations reveal over 265,000 galaxies, but are much shallower than the Hubble Ultra Deep field in terms of the most distant galaxies observed.

These Hubble images are overlaid on an even wider view using ground-based data from the Digitized Sky Survey. An orange outline shows the field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. Roman’s 18 detectors will be able to observe an area of sky at least 100 times larger than the Hubble Ultra Deep Field at one time, with the same crisp sharpness as Hubble.

NASA, ESA, and A. Koekemoer (STScI)

Acknowledgement: Digitized Sky Survey

Image6 MBTIFSTScI-R-p2103b-f-1920x1080


https://hubblesite.org/contents/media/images/2021/03/4798-Image?news=true

This zoom-out animation begins with a view of the Hubble Ultra Deep Field (outlined in blue), which represents the deepest portrait of the universe ever achieved by humankind, at visible, ultraviolet and near-infrared wavelengths. The view then expands to show a wider Hubble survey of that area of sky (white outline), which captured about 265,000 galaxies in a large mosaic. Expanding further, we see the Hubble data overlaid on a ground-based view using data from the Digitized Sky Survey.

An orange outline shows the field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. Roman’s 18 detectors will be able to observe an area of sky at least 100 times larger than the Hubble Ultra Deep Field at one time, with the same crisp sharpness as Hubble.

NASA, ESA, A. Koekemoer (STScI), and A. Pagan (STScI)Video20.2 MBMP4STScI-R-v2103a-1920x1080


https://hubblesite.org/contents/media/videos/2021/03/1303-Video?news=true

This zoom-out annotated animation begins with a view of the Hubble Ultra Deep Field (outlined in blue), which represents the deepest portrait of the universe ever achieved by humankind, at visible, ultraviolet and near-infrared wavelengths. The view then expands to show a wider Hubble survey of that area of sky (white outline), which captured about 265,000 galaxies in a large mosaic. Expanding further, we see the Hubble data overlaid on a ground-based view using data from the Digitized Sky Survey.

An orange outline shows the field of view of NASA’s upcoming Nancy Grace Roman Space Telescope. Roman’s 18 detectors will be able to observe an area of sky at least 100 times larger than the Hubble Ultra Deep Field at one time, with the same crisp sharpness as Hubble.

NASA, ESA, A. Koekemoer (STScI), and A. Pagan (STScI)Video20.4 MBMP4STScI-R-v2103b-1920x1080


https://hubblesite.org/contents/media/videos/2021/03/1304-Video?news=true








Thumbnail and DescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location

(2011) Astronomers have pushed NASA's Hubble Space Telescope to its limits by finding what they believe is the most distant object ever seen in the universe. Its light traveled 13.2 billion years to reach Hubble, roughly 150 million years longer than the previous record holder. The age of the universe is 13.7 billion years.

Illustration: NASA, ESA, and A. Feild (STScI);


Science: NASA, ESA, G. Illingworth (University of California, Santa Cruz), R. Bouwens (University of California, Santa Cruz, and Leiden University), and the HUDF09 Team

Image3.4 MBJPGEarly-Universehttps://stsci.box.com/s/ah83zdbpqtv46ci932imgv209yfh1rr7https://hubblesite.org/contents/media/images/2011/05/2815-Image.html?news=true

The SDSS map of the Universe. Each dot is a galaxy; the color bar shows the local density.

SDSSImage173.1 KBJPGorangepiehttps://stsci.box.com/s/6xfec4uos1147czkkz3epuydta4p647yhttps://www.sdss.org/science/

Visualization of simulated Roman emission-line galaxy distribution data used to measure BAO and RSD. The wedge shown covers an RA sweep of 45° with a DEC thickness of 1°, and includes more than 215,000 galaxies.


Data provided by Z. Zhai and Y. Wang, Caltech/IPAC, and A. Benson, Carnegie Observatories

Data Visualization: J. DePasquale, STScI.

Image3.7 MBPNGstatic_wedge-rev

"Cosmology with Roman" Fact Sheet

https://stsci.edu/roman/documentation/technical-documentation

Visualization of simulated Roman emission-line galaxy distribution data used to measure BAO and RSD. The wedge shown covers an RA sweep of 45° with a DEC thickness of 1°, and includes more than 215,000 galaxies of a much larger 5-million galaxy simulated galaxy catalog.

This version developed for experts in cosmology.

Data provided by Z. Zhai and Y. Wang, Caltech/IPAC, and A. Benson, Carnegie Observatories

Data Visualization: J. DePasquale and D. Player, STScI.

Image10.8 MBPNGLSS_Roman_Version1_Final

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

Visualization of simulated Roman emission-line galaxy distribution data used to measure BAO and RSD. The wedge shown covers an RA sweep of 45° with a DEC thickness of 1°, and includes more than 215,000 galaxies of a much larger 5-million galaxy simulated galaxy catalog.

This version developed for those not experts in cosmology.

Data provided by Z. Zhai and Y. Wang, Caltech/IPAC, and A. Benson, Carnegie Observatories

Data Visualization: J. DePasquale and D. Player, STScI.

Image10.3 MBPNGLSS_Roman_Version2_Final

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

This animation explains how BAOs arose in the early universe and how astronomers can study the faint imprint they made on galaxy distribution to probe dark energy’s effects over time. In the beginning, the cosmos was filled with a hot, dense fluid called plasma. Tiny variations in density excited sound waves that rippled through the fluid. When the universe was about 400,000 years old, the waves froze where they were. Slightly more galaxies formed along the ripples. These frozen ripples stretched as the universe expanded, increasing the distance between galaxies. Astronomers can study this preferred distance between galaxies in different cosmic ages to understand the expansion history of the universe.

NASA's Goddard Space Flight Center


Music: "Pulse and Glow" from Adrift in Time. Written and Produced by Lars Leonhard.

Video250 MBMP413768_BAO_Narr_4k

https://svs.gsfc.nasa.gov/13768

Shorter, unnarrated version of the animation above.

This animation explains how BAOs arose in the early universe and how astronomers can study the faint imprint they made on galaxy distribution to probe dark energy’s effects over time. In the beginning, the cosmos was filled with a hot, dense fluid called plasma. Tiny variations in density excited sound waves that rippled through the fluid. When the universe was about 400,000 years old, the waves froze where they were. Slightly more galaxies formed along the ripples. These frozen ripples stretched as the universe expanded, increasing the distance between galaxies. Astronomers can study this preferred distance between galaxies in different cosmic ages to understand the expansion history of the universe.

NASA's Goddard Space Flight CenterVideo66.2 MBMP4BAO_Short_4k

https://svs.gsfc.nasa.gov/13768

The small peak near the center of the graph in this video shows how BAOs subtly influenced galaxy distribution. Today, there is a slight bump in the probability of finding galaxies about 500 million light-years away from each other. This distance shrinks as we look farther out into space, to earlier cosmic times.

NASA's Goddard Space Flight CenterVideo23.2 MBMP4BAO_Bump_Graph_4k

https://svs.gsfc.nasa.gov/13768

Waves of sound – BAOs – ripple through the primordial cosmic sea in this animated gif.

NASA's Goddard Space Flight CenterAnimation4.6 MBGIFBAO_Ripples

https://svs.gsfc.nasa.gov/13768
Thumbnail and DescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location

This infographic showcases the difference in data volume between the Nancy Grace Roman, Webb and Hubble space telescopes. Each day, Roman will send over 500 times more data back to Earth than Hubble.

NASA's Goddard Space Flight CenterImage38.9 MBPNGRoman_Data_Scale_Finalhttps://stsci.box.com/s/iqmluwt2j2dyeexzpv8vyfdo4kkristphttps://svs.gsfc.nasa.gov/13667

This infographic showcases the difference in data volume between the Nancy Grace Roman and Hubble space telescopes. Each day, Roman will send over 500 times more data back to Earth than Hubble.

NASA's Goddard Space Flight CenterImage39.3 MBPNGRoman_Data_Scale_HubbleOnly_Finalhttps://stsci.box.com/s/okmw15dblwmq4ajnmkfnivxdwb4e4p6shttps://svs.gsfc.nasa.gov/13667

This infographic showcases the difference in data volume between the Nancy Grace Roman and Hubble space telescopes, using hard drives to symbolize data volume.  Each day, Roman will send over 500 times more data back to Earth than Hubble.  This version gives the time baseline by which these archival data are collected (30 years for Hubble, 5 years for Roman).

Z. Levy (STScI)Image1.7 MBJPGBig Data - with time

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation


This infographic showcases the difference in data volume between the Nancy Grace Roman and Hubble space telescopes, using hard drives to symbolize data volume.  Each day, Roman will send over 500 times more data back to Earth than Hubble.  This version leaves off the time baseline by which these archival data are collected (30 years for Hubble, 5 years for Roman).

Z. Levy (STScI)Image1.6 MBJPGBig Datahttps://stsci.box.com/s/n89dvdu344h7br3j09udbet76w5mxh2t

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

This simulated image illustrates the wide range of science enabled by Roman's extremely wide field of view and exquisite resolution. The yellow squares, which all contain background imagery simulated using data from Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) program, outline the area Roman can capture in a single observation. A blue square shows the field of view of Hubble’s Wide Field Camera 3 for comparison. While the CANDELS program took Hubble nearly 21 days to survey in near-infrared light, Roman’s large field of view and higher efficiency would allow it to survey the same area in less than half an hour. Top left: This view illustrates a region of the large nearby spiral galaxy M83. Top right: A hypothetical distant dwarf galaxy appears in this magnified view, demonstrating Roman’s ability to detect small, faint galaxies at large distances. Bottom left: This magnified view illustrates how Roman will be able to resolve bright stars even in the dense cores of globular star clusters. Bottom right: A zoom of the CANDELS-based background shows the density of high-redshift galaxies Roman will detect.

Benjamin Williams, David Weinberg, Anil Seth, Eric Bell, Dave Sand, Dominic Benford, and the WINGS Science Investigation Team


Image Composition: Z. Levy (STScI)

Image8.5 MBJPGRoman - Simulated Viewhttps://stsci.box.com/s/bceee8zopmvsq169n5tkndutfwnaezlu

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

This simulated image illustrates the wide range of science enabled by Roman's extremely wide field of view and exquisite resolution. The purple squares, which all contain background imagery simulated using data from Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) program, outline the area Roman can capture in a single observation. An orange square shows the field of view of Hubble’s Wide Field Camera 3 for comparison. While the CANDELS program took Hubble nearly 21 days to survey in near-infrared light, Roman’s large field of view and higher efficiency would allow it to survey the same area in less than half an hour. Top left: This view illustrates a region of the large nearby spiral galaxy M83. Top right: A hypothetical distant dwarf galaxy appears in this magnified view, demonstrating Roman’s ability to detect small, faint galaxies at large distances. Bottom left: This magnified view illustrates how Roman will be able to resolve bright stars even in the dense cores of globular star clusters. Bottom right: A zoom of the CANDELS-based background shows the density of high-redshift galaxies Roman will detect.

Benjamin Williams, David Weinberg, Anil Seth, Eric Bell, Dave Sand, Dominic Benford, and the WINGS Science Investigation TeamImage
PNGGreatfield_Simulated_Roman_Landscape_Texthttps://stsci.box.com/s/9fgfz4uyjmpa1io3yzow2w9kn2icigxghttps://svs.gsfc.nasa.gov/13667

This simulated image illustrates the wide range of science enabled by Roman's extremely wide field of view and exquisite resolution. The purple squares, which all contain background imagery simulated using data from Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) program, outline the area Roman can capture in a single observation. An orange square shows the field of view of Hubble’s Wide Field Camera 3 for comparison. While the CANDELS program took Hubble nearly 21 days to survey in near-infrared light, Roman’s large field of view and higher efficiency would allow it to survey the same area in less than half an hour. Top left: This view illustrates a region of the large nearby spiral galaxy M83. Top right: A hypothetical distant dwarf galaxy appears in this magnified view, demonstrating Roman’s ability to detect small, faint galaxies at large distances. Bottom left: This magnified view illustrates how Roman will be able to resolve bright stars even in the dense cores of globular star clusters. Bottom right: A zoom of the CANDELS-based background shows the density of high-redshift galaxies Roman will detect.

Benjamin Williams, David Weinberg, Anil Seth, Eric Bell, Dave Sand, Dominic Benford, and the WINGS Science Investigation TeamImage
PNGGreatfield_Simulated_Roman_Portrait_Texthttps://stsci.box.com/s/4wrzhvltn01mcpu2w238tddsvsx8fsmchttps://svs.gsfc.nasa.gov/13667

This simulated image illustrates the wide range of science enabled by Roman's extremely wide field of view and exquisite resolution. The purple squares, which all contain background imagery simulated using data from Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) program, outline the area Roman can capture in a single observation. An orange square shows the field of view of Hubble’s Wide Field Camera 3 for comparison. While the CANDELS program took Hubble nearly 21 days to survey in near-infrared light, Roman’s large field of view and higher efficiency would allow it to survey the same area in less than half an hour. Top left: This view illustrates a region of the large nearby spiral galaxy M83. Top right: A hypothetical distant dwarf galaxy appears in this magnified view, demonstrating Roman’s ability to detect small, faint galaxies at large distances. Bottom left: This magnified view illustrates how Roman will be able to resolve bright stars even in the dense cores of globular star clusters. Bottom right: A zoom of the CANDELS-based background shows the density of high-redshift galaxies Roman will detect.

Benjamin Williams, David Weinberg, Anil Seth, Eric Bell, Dave Sand, Dominic Benford, and the WINGS Science Investigation TeamImage
PNGGreatfield_Simulated_Roman_Landscape_NoTexthttps://stsci.box.com/s/lnp2rumbiadldy6a6wrcj392qvbmhzvwhttps://svs.gsfc.nasa.gov/13667

This simulated image illustrates the wide range of science enabled by Roman's extremely wide field of view and exquisite resolution. The purple squares, which all contain background imagery simulated using data from Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) program, outline the area Roman can capture in a single observation. An orange square shows the field of view of Hubble’s Wide Field Camera 3 for comparison. While the CANDELS program took Hubble nearly 21 days to survey in near-infrared light, Roman’s large field of view and higher efficiency would allow it to survey the same area in less than half an hour. Top left: This view illustrates a region of the large nearby spiral galaxy M83. Top right: A hypothetical distant dwarf galaxy appears in this magnified view, demonstrating Roman’s ability to detect small, faint galaxies at large distances. Bottom left: This magnified view illustrates how Roman will be able to resolve bright stars even in the dense cores of globular star clusters. Bottom right: A zoom of the CANDELS-based background shows the density of high-redshift galaxies Roman will detect.

Benjamin Williams, David Weinberg, Anil Seth, Eric Bell, Dave Sand, Dominic Benford, and the WINGS Science Investigation TeamImage
PNGGreatfield_Simulated_Roman_Portrait_NoTexthttps://stsci.box.com/s/61cwd1r28a686qh1uze2v15ws3azc5rqhttps://svs.gsfc.nasa.gov/13667








Thumbnail and DescriptionCreditFile TypeFile SizeFile ExtensionFilenameFile LocationSource Location


Comparison of Hubble, Webb, and Roman, including their unique strengths and synergies.

A. James (STScI)Image32.4 MBPNGRoman-Hubble-Webb_comparison

https://stsci.box.com/s/s2f0es38bw4kex10lhks2x58pubfo0k3

https://hubblesite.org/hubble-30th-anniversary/resources

Every ten years the astronomy community evaluates the top priorities for future science and what missions can best address them – called the Decadal Review.  This figure highlights the prioritized large space-based missions for previous decadal reviews.  The dates listed are the launch dates for each mission.

NASA, J. Kang (STScI)Image4.7 MBPNGHistory_Space_Based_Missions

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

Comparison of observatories in the 2020s and their windows into the electromagnetic spectrum.  

A. James (STScI)Image1.3 MBJPGmany_observatories_wavelength_graphhttps://stsci.box.com/s/1nbv554hcym2yjth9a5etnm9ebfzwqnq

Roman Overview Presentation

https://stsci.edu/roman/documentation/technical-documentation

NASA Astrophysics Fleet Mission Chart

NASAimage3.5 MBPDFAstro Fleet2019-Feb21_TAGGEDhttps://stsci.box.com/s/ferl1fvl5q9j3nypo5t1lw17vcj4hm3ghttps://smd-prod.s3.amazonaws.com/science-pink/s3fs-public/atoms/files/Astro%20Fleet2019-Feb21_TAGGED.pdf

Comparison of Hubble and expected Rubin Observatory LSST data resolution. (L) BVz color image from the Hubble CANDELS field with θ = 0.1” and r ≈ 28.5. Roman will have comparable resolution. (R) Simulated Rubin LSST image made by degrading Hubble data to Rubin resolution of θ = 0.6”. In the Rubin image, the galaxy is blended with surrounding objects. Correlating overlapping Rubin and Roman imagery would make it possible to develop machine learning algorithms to deblend Rubin imagery that does not overlap with Roman.


Clean version.

Image from B.E. Robertson, et al. 2019, Nat Rev Phys, 1, 450



image2 MBPNGRoman_Deblending_clean


Comparison of Hubble and expected Rubin Observatory LSST data resolution. (L) BVz color image from the Hubble CANDELS field with θ = 0.1” and r ≈ 28.5. Roman will have comparable resolution. (R) Simulated Rubin LSST image made by degrading Hubble data to Rubin resolution of θ = 0.6”. In the Rubin image, the galaxy is blended with surrounding objects. Correlating overlapping Rubin and Roman imagery would make it possible to develop machine learning algorithms to deblend Rubin imagery that does not overlap with Roman.


Annotated version.

Image from B.E. Robertson, et al. 2019, Nat Rev Phys, 1, 450image2 MBPNGRoman_Deblending_annotated

https://ui.adsabs.harvard.edu/abs/2019NatRP...1..450R/abstract


"Cosmology with Roman" Fact Sheet

https://stsci.edu/roman/documentation/technical-documentation




  • No labels