Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Catalog

Release Date

Mean Epoch of catalog positions

Typical errors

Worst errors

Total Error (including SI to FGS alignment)

Comment

GSC 2.4.0 + Gaia FitDec 20192015.50.01"
0.01"WCSNAME=  'IDC*_FIT_*_GAIADR*'

GSC 2.4.0

Oct 2017

2015.0

0.03”


~0.2”

GSC2.3.4 aligned to Gaia DR1    DR1   
Complete GSC Summary
WCSNAME=  'IDC*-GSC240',   'IDC*-HSC30'

GSC 2.3.3Oct 2009



WFC3 installed May 2009

GSC 2.3.2

Oct 2005

1992.5

0.3”

0.75”

~0.3”

Public Release
GSC 1.1 and GSC 2.3.2 Comparison

GSC 2.2.0

Jun 2001





Public Release
ACS installed Mar 2002

GSC 2.0

Jan 2000





Science target fields only; GSC2 summary

GSC 1.1

Aug 1992

1981.8

0.5”

~1”

~1”

First version published for the user community
Used by HST operations prior to Cycle 15
WFPC2 installed Dec 1993

GSC 1.0

Jun 1989



1-2”


 GSC1 summary

...

  • a priori         : correct the coordinates of the guide stars in use at the time of observation to the coordinates of those stars as determined by Gaia, applying a global offset to the WCS
  • a posteriori  : identify sources in the HST image and cross-match with positions from an external reference catalog (such as Gaia) to improve the WCS (fitting x/y to RA/Dec)

Note that a priori corrections are only relevant for observations which executed prior October 2017 (eg. prior to the release of GSC 2.4.0), and these will still include small errors in the alignment of the science instruments to the HST focal plane. The a posteriori corrections are limited to imaging instruments for which there are an adequate number sources to define a reference catalog for matching. These solutions remove uncertainties in the focal plane and are expected to have the smallest absolute astrometric error.

Implementation

The key to implementing improvements to the astrometry is the use of headerlets, self-contained FITS extensions containing a WCS transformation which can be attached to a FITS file and applied to the primary WCS. An observation can have multiple headerlets, each of which may have astrometry derived by differing methods. As HST data is processed/reprocessed, all available headerlets will be present as FITS extensions in the archived image with the best solution applied to the primary WCS.  More details on how the WCS information is stored in headerlets may be found on the page Astrometry in Drizzled Products.

WCS Naming Conventions

Successfully aligning an observation to Gaia using the a posteriori processing will result in an update of the 'active' WCS of the image with the new solution and the new headerlet extension. This headerlet not only includes the WCS keywords which define the transformation from pixels to Gaia-aligned positions on the sky, but it also contains information about how this solution was derived along with the errors to be expected based on the fit. 

The various WCS solutions are identified by the WCSNAME keyword found in each FITS headerlet and use the following naming convention: 

wcsName = OriginalSolution - CorrectionType

WCS Naming Conventions

Successfully aligning an observation to Gaia using the a posteriori processing will result in an update of the 'active' WCS of the image with the new solution and the new headerlet extension. This headerlet not only includes the WCS keywords which define the transformation from pixels to Gaia-aligned positions on the sky, but it also contains information about how this solution was derived along with the errors to be expected based on the fit. 

The various WCS solutions are identified by the WCSNAME keyword found in each FITS headerlet and use the following naming convention: 

wcsName = OriginalSolution - CorrectionType

 where OriginalSolution  where OriginalSolution may be either

  •    OPUS : initial ground system wcs, no distortion correction
  •    IDC_xxxxxxxxx : initial distortion corrected wcs  (where xxxxxxxxx = geometric distortion model used, eg. the rootname of the IDCTAB reference file)

...

Table 2: Sample active WCSNAME keyword values and the corresponding WCSTYPE description. The best WCS is the FIT-SVM solution which has the best relative and absolute astrometry. 

WCSNAME

WCSTYPE

Comment

OPUS

‘distorted not aligned’

No distortion correction has been applied; analysis of these FLT/FLC files may only be performed if corrected by the instrument-specific pixel area map

IDC_0461802ej

‘undistorted not aligned'                                                                   

Distortion-corrected using
the
IDCTAB reference file '0461802ej_idc.fits', but not aligned to
an external
any catalog

IDC_0461802ej-GSC240

‘undistorted a priori solution based on GSC240'

Alignment based on Guide Star Catalog v2.4.0 (GSC240).  Absolute errors ~0.1"

IDC_0461802ej-HSC30

‘undistorted a priori solution based on HSC30’

Alignment based on Hubble Source Catalog v3.0.  HSC30 errors are typically smaller than GSC240. If both corrections are available, HSC takes precedence.

IDC_0461802ej-FIT_

REL

IMG_catalog

‘undistorted a posteriori solution

relatively

aligned image-by-image to catalog’

Exposures individually aligned to
one another, and then aligned
the reference catalog (not as a set
to the reference  catalog
)

IDC_0461802ej-FIT_REL_

NONE

catalog

‘undistorted a posteriori solution relatively aligned to

NONE’

catalog’

Exposures

relatively

aligned to one another,

but the quality of the fit to an absolute reference catalog is unverified and should be checked by the user

and then aligned as a set to the reference  catalog

IDC_0461802ej-FIT_
IMG
SVM_catalog
‘undistorted
‘undistorted a posteriori solution relatively aligned
image
filter-by-
image
filter to catalog’HAP-SVM solution; Exposures
individually
aligned to
the
a reference catalog
(not as a set)

IDC_0461802ej-FIT_IMG_NONE

‘undistorted a posteriori solution aligned image-by-image to NONE’

Exposures individually aligned to a reference catalog, but the quality of the fit is unverified and should be checked by the userIDC_0461802ej-FIT_SVM_catalog‘undistorted a posteriori solution relatively aligned filter-by-filter to catalog*’HAP-SVM solution; Exposures aligned to a reference catalog and include improved relative alignment across filters in a visit. 
and include improved relative alignment across filters in a visit.   BEST WCS SOLUTION

Implementation

The key to implementing improvements to the astrometry is the use of headerlets, self-contained FITS extensions containing a WCS transformation which can be attached to a FITS file and applied to the primary WCS. An observation can have multiple headerlets, each of which may have astrometry derived by differing methods. As HST data is processed/reprocessed, all available headerlets will be present as FITS extensions in the archived image with the best solution applied to the primary WCS.  More details on how the WCS information is stored in headerlets may be found on the page Astrometry in Drizzled Products.

Caveats

While the majority of calibrated HST data products are now aligned to a common absolute reference frame, further improvements may be possible via manual realignment using the drizzlepac tools.  This is particularly true for exposures acquired in the same visit where the WCSNAMEs does not contain the string 'FIT_SVM_GAIA***'.  For standard drizzled data products:

...