Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Beginning 3 December 2019, improved astrometry for WFC3 and ACS imaging data is available from MAST and includes two new corrections to the header world coordinate system (WCS). The first includes an updated Hubble Guide Star Catalog (GSC version 2.4.0) which updates the coordinates of the guide stars with the positions from Gaia DR1. This reduces the typical uncertainties in the positions of the guide stars to <~100 ~200 mas over the entire sky. Combining this new information with the knowledge of the instrument distortions, an a priori correction has been made for all WFC3 and ACS observations in order to lock all HST observations onto a common absolute reference frame. When possible, an additional correction has been applied by aligning sources in each HST image directly to the Gaia catalog; this fit is referred to as an a posteriori correction. While some observing modes cannot be aligned to Gaia (e.g. grism and moving target observations) or the alignment may fail due to a lack of sources in either the HST image or the Gaia catalog, approximately 80% of ACS/WFC and 50% of WFC3/IR frames have been directly aligned. For these data products, the typical pointing uncertainty is reduced to ~10 mas, although the uncertainties increase for observations further in time from the Gaia reference epoch (2015.0 for DR1, 2015.5 for DR2)

...

Historically, the accuracy of HST absolute astrometry has been limited primarily by uncertainties in the celestial coordinates of the guide stars as specified in the Guide Star Catalog. GSC 1.1 had nominal rms errors of ~0.5 arcsec per coordinate, with errors as large as ~1‐3 arcsec reported near the plate edges. This accuracy improved substantially in October 2005 (during Cycle 15) with the introduction of GSC 2.3.2, where rms errors per coordinate were reduced to ~0.3 arcsec over the whole sky.  An updated version of the catalog (GSC 2.4.0) was released in October 2017, improving the celestial coordinates with the positions from Gaia DR1 and reducing errors to < 30mas over the entire sky. Thus, after After including uncertainties in the positions of the science Instruments instruments (SIs) in the alignment of the focal plane to the Fine Guidance Sensors (FGS), the total error in HST absolute astrometry is ~1 arcsec for observations made with GSC 1.1, ~0.3 arcsec for those made with GSC 2.3.2, and ~0.1 arcsec when using the new 2 arcsec for those with GSC 2.4.0. These errors are reduced to ~10 mas for observations with a posteriori alignment to Gaia. A summary of the GSC catalogs and associated pointing errors over the HST lifetime and the expected accuracy of the updated WCS solutions is provided in Table 1. 


Table 1: Key Guide Star Catalog releases and associated errors 

Catalog

Release Date

Mean Epoch of catalog positions

Typical errors

Worst errors

Total Error (including SI to FGS alignment)

Comment

GSC 2.4.0 + Gaia FitDec 20192015.50.01"
0.01"WCSNAME='FIT_[REL|IMG]_GAIADR[12]'

GSC 2.4.0

Oct 2017

2015.0

0.03”0


~0.10”2”

GSC2.3.4 aligned to Gaia DR1    

Complete GSC Summary

WCSNAME='IDC*-GSC240', 'IDC*-HSC30'

GSC 2.3.3Oct 2009



WFC3 installed May 2009

GSC 2.3.2

Oct 2005

1992.5

0.3”

0.75”

~0.3”

Public Release

GSC 1.1 and GSC 2.3.2 Comparison

GSC 2.2.0

Jun 2001





Public Release

ACS installed Mar 2002

GSC 2.0

Jan 2000





Science target fields only; GSC2 summary

GSC 1.1

Aug 1992

1981.8

0.5”

~1”

~1”

First version published for the user community

Used by HST operations prior to Cycle 15

WFPC2 installed Dec 1993

GSC 1.0

Jun 1989



1-2”


 GSC1 summary

...